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ABSTRACT

This study introduces a concise framework for
detail enhancement in industrial digital
radiography based on the mathematical
integration of logarithmic transformation and
multiscale Laplacian analysis. The proposed
method utilizes multiscale adaptive pixel-level
fusion with hyperbolic tangent-based coefficients
to preserve microscale defects while enhancing
subtle features throughout the dynamic range.
Quantitative evaluations of diverse industrial
welds, including ship plates, boilers, and oil
pipelines, demonstrated substantial
improvements. In oil pipeline weld inspections,
the Peak Signal-to-Noise Ratio of the method
based on Histogram Equalization increased by
133.82%, whereas the Structural Similarity Index

Measure and Spatial Frequency metrics exhibited
gains of up to 127.27% and 85.81%, respectively.
The framework's consistent, albeit moderate,
performance gains over state-of-the-art deep
learning methods across all benchmarks confirm
its value not only as a robust and widely
applicable tool but also as a superior
preprocessing or integrated solution within
nondestructive testing pipelines.
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Table 1. List of Notations and Symbols

Symbol Comment

a Logarithm base
c Center position index of Laplacian kernel
d Manhattan distance from the center
flxy) Continuous image intensity function at spatial coordinates (x,y)
1. Cutoff frequency in cycles per pixel
Feina(c,y) Final fusion result of the pixel at coordinates (x,y)
fr A proportionality constant typically ranging from 0.6 to 0.8
F(xy) Enhanced image at scale k
Fin Minimum value of the fusion result across the entire image
F,ox Maximum value of the fusion result across the entire image
G(ij,0) Value of Gaussian kernel at scale o and position (i,j)
H Image height
H(x,y) Mean curvature of the intensity surface at pixel (x,y)
H (E) Horizontal gradient of the image E between the adjacent pixels in the same row
I(x,y) Discrete image intensity at pixel coordinates (x,y)
Lhancea(26,Y) Enhanced image pixel value in grayscale levels at position (x,y)

Symbol Comment

Lios(x, y) Pixel value at position (x, y) after the logarithmic transformation
Loig(x, y) Original pixel value at position (x, y)
Linoon(,Y,0) Smoothed image at scale o and position (x,y)
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Symbol Comment

K,., A standard 3x3 discrete Laplacian kernel
K. (i) Value of the 5x5 Laplacian kernel at position (i,j)
Kiaplace x Laplacian kernel of size (3+2k)x(3+2k) at scale k
L(x,y) Discrete Laplacian response at position (x,y)
N Total number of scales
PSNR(E,S) Peak signal-to-noise ratio of image F relative to image S
round( ) Rounding function to the nearest integer
Benchmark for Laplacian response differential analysis that is initialized witl
Ry () zeros and becomes the convolution result of the minimal Laplacian kernel onc
the Laplacian operation is performed.
Laplacian response at scale k and position (x,y), which uses the kth Laplaciat
Ri(x,y) k 1 .
ernel to convolve the image
size Laplacian kernel size
SF(E) Spatial frequency of image F
SSIM(E, S) Structural similarity index measure of the image E relative to the image S
tanh (-) Hyperbolic tangent function
Vgrayscale Grayscale value of DR image
vV .(E) Compute the vertical gradient of the image E
Vdisplay Display value
w Image width
WL Window level
ww Window width
V2 lx,y) Laplacian operator at spatial coordinates (x,y)
9*f(x,y)/0x> Second-order partial derivatives in the respective spatial direction X
9*f(x,y)/0y? Second-order partial derivatives in the respective spatial direction Y
V2G(x,y) the Laplacian of the intensity function at pixel (x,y)
VG(,y) the gradient vector field at pixel (x,y)
|VG(x,y)| the magnitude of the gradient vector at pixel (x,y)
* Convolution operation
| V2R (x,y)| Magnitude of the Laplacian response at pixel coordinates (x,y)
d*R(x,y)/ds? Second directional derivative along the gradient direction
A(xy) Differences in details between scale k and the benchmark for Laplacian response
a Logarithm base
15} A small offset to avoid mathematical singularity at zero
dllog(x,y)/dl,.(x,y)  Derivative of the logarithmic transformation at position (x,y)
a(x,y) Importance coefficient of the pixel at position (x,y) and scale k
A A factor that controls the detail enhancement sensitivity
F{} Fourier transform operator
(u,v) Spatial frequency coordinates

l. INTRODUCTION

Industrial digital radiography (DR) has emerged
as a critical technology for nondestructive
evaluation in precision manufacturing sectors,
including the aerospace, automotive, and nuclear
power industries[1-3]. DR images characterized
by pixel values spanning 0 to 65535 provide an
extensive dynamic range for capturing subtle
material  variations  while  simultaneously
presenting significant challenges for defect

detection and characterization[3, 4]. Conventional
image enhancement techniques often encounter
difficulties in  balancing the competing
requirements of noise suppression and detail
preservation, particularly when addressing
micron-scale defects that manifest as minimal
intensity variations within complex industrial
components[5-7].

The current landscape of industrial DR image
enhancement reveals fundamental limitations in
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several methodological approaches[3, 8, 9].
Gaussian-dependent multiscale analysis, while
effective for noise reduction, intrinsically
compromises fine structural details through the

systematic  attenuation of high-frequency
components that are essential for defect
characterization[3, 10]. Methods based on

discrete wavelet transform (DWT) encounter
challenges in optimal basis selection and often
introduce  reconstruction  artifacts = when
processing complex defect morphologies[11-13].
Histogram equalization (HE) and contrast-limited
adaptive  histogram  equalization (CLAHE)
techniques, despite = their = computational
simplicity, frequently produce unnatural contrast
amplification and fail to preserve subtle intensity
gradients that are critical for accurate defect
assessment[14-16]. Although deep learning (DL)

approaches, such as methods based on
convolutional neural network (CNN), are
promising in certain domains, they face

substantial limitations, including extensive data
requirements, limited interpretability, poor
generalization across diverse industrial scenarios,
and a lack of physical interpretability[9, 10, 17,
18]. Furthermore, these methods collectively
exhibit significant computational complexity, and
their parameter sensitivity necessitates extensive
manual optimization, undermining operational
efficiency in industrial environments[3, 10, 19,
20]. These multifaceted challenges underscore the
critical need for a fundamentally new paradigm
that can simultaneously address the competing
demands of computational efficiency, physical
interpretability, and uncompromised detail
preservation[6, 21, 22].

To address these challenges, this study introduces
a paradigm-shifting framework characterized by a
Gaussian-free architecture and pixel-level fusion
technology. The proposed method establishes a
novel integration of perceptually aligned
logarithmic transformation with direct multiscale
Laplacian analysis, achieving unprecedented
detail preservation while maintaining
computational tractability. The framework
incorporates an adaptive fusion mechanism
governed by hyperbolic tangent importance
coefficients, enabling the selective enhancement

of defect regions while preserving structural
integrity  through  physically interpretable
operations. This approach ensures complete
mathematical transparency and eliminates the
black-box characteristics that impede the
industrial adoption of many contemporary
techniques. The principal contributions of this
study encompass three key innovations: (1) a
comprehensive  Gaussian-free =~ mathematical
framework  that fundamentally redefines
multiscale enhancement while preserving
computational efficiency; (2) an adaptive
pixel-level fusion technology with precise control
mechanisms for defect-specific enhancement; and
(3) a rigorous theoretical foundation with
complete mathematical derivations validated
across diverse industrial applications. These
advances collectively provide an
engineering-friendly solution that balances the
enhancement efficacy with the ease of
implementation while maintaining full physical
interpretability throughout the enhancement
pipeline.

This paper is systematically organized to present a
novel detail-enhancement method for industrial
DR images using multiscale pixel-level fusion
techniques. Section 2 establishes the theoretical
foundation by reviewing the fundamental
concepts of Laplacian transform theory,
differential geometric interpretations, discrete
implementations, logarithmic transformation
principles, and industrial DR imaging
characteristics. Section 3 introduces the proposed
methodology in detail, beginning with the
fundamental principles, followed by the
mathematical formulation of the pixel-level
adaptive fusion coefficient, construction of
multiscale space using Laplacian convolution

operator, multiscale pixel-level fusion
methodology, enhanced image reconstruction
procedures, and strategic avoidance of

Gaussian-induced detail destruction. Section 4
presents the experimental setup and analytical
methodologies employed for the validation.
Section 5 discusses the experimental results and
provides a comprehensive analysis of the
method's performance, limitations, and potential
improvements. Finally, Section 6 concludes the
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paper by summarizing the key findings and
outlining future research directions.

lI.  RELATED WORK
2.1 Laplacian Transform Theory

The Laplacian transform is a fundamental
mathematical construct in image processing that
serves as a second-order differential operator that
characterizes local intensity variations through
the divergence measurement of the gradient
field[23-25]. The continuous two-dimensional
equation expresses this relationship as follows:

°f(x,y)  0*f(x,y) ;

where V?f(x,y) denotes the Laplacian operator at
spatial coordinates (x,y), flx,y) represents the
continuous image intensity function at spatial
coordinates (x,y), 0*(x,y)/0x* indicates the
second-order partial derivatives in the respective
spatial direction X, and 9*f(x,y)/0y? indicates the
second-order partial derivatives in the respective
spatial direction Y.

The discrete implementation employs central
difference approximations to achieve
computational efficiency while maintaining the
mathematical accuracy:

VZf(x,y) = 327 5 2 ey
9%1(x,y)
Tz1(9c+1,y)—21(x,y)+1(x—1,y)# (2)
9%1(x,y)
a—yzzl(x,y+1)—21(x,y)+I(x,y—1)# 3)

where I(x,y) represents the discrete image intensity at pixel coordinates (x,y), and I(x+1,y), I(x-1,y),
I(x,y+1), and I(x,y-1) denote the intensity values at adjacent pixel positions. The composite discrete
Laplacian operator combines these approximations as follows:

Lx,y)=1(x+1Ly)+I(x—1,y)+1(x,y+ 1D+ 1(x,y—1) —4l(x,y)#

where L(x,y) represents the discrete Laplacian
response at position (x,y).

The Laplacian transform effectively computes the
difference between each pixel and its local
neighborhood average, functioning as a high-pass
filter that amplifies regions with significant
intensity variations and suppresses homogeneous
areas. It captures the essence of the local
curvature in intensity surfaces by quantifying how
the average value of a function in the
neighborhood of a point differs from its value at
the point.

The geometric interpretation of the Laplacian
operator reveals its profound connection to
surface curvature characteristics [26, 27]. This
relationship is formalized by the mean curvature
equation:

V2G(x,y)

1) = 2 W2

)

4

where H(x,y) represents the mean curvature of
the intensity surface at pixel (x,y), V>G(x,y)
denotes the Laplacian of the intensity function at
pixel (xy), VG(x,y) represents the gradient
vector field at pixel (x,y), and |V G(x,y)| indicates
the magnitude of the gradient vector at pixel (x,y).
This mathematical relationship demonstrates that
Laplacian responses correlate directly with the
local curvature of the intensity landscape,
generating strong outputs in regions with high
curvature, such as edges, corners, and fine details,
while producing minimal responses in relatively
flat homogeneous areas.

2.2 Logarithmic Transformation Theory

The logarithmic transformation addresses the
fundamental challenge of a high dynamic range in
industrial DR images through nonlinear mapping,
which compresses the extensive intensity range
while  preserving the relative  contrast
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relationships. The mathematical equation
defining this transformation is as follows:
liog (x,y) = loga{z@orig(x: y) +6)# (6)

where I,;,(x, y) is the original pixel value at
position (x, y), IL(x, y) represents the pixel value
at position (x, y) after the logarithmic
transformation, a denotes the logarithm base, and
6 provides a small offset to avoid mathematical
singularity at zero.

The transformation employs a compressive
nonlinearity to enhance contrast in dark regions
and prevent saturation in bright areas, thereby
directly addressing the challenge of defects
distributed across the full intensity spectrum in
industrial DR imaging[28, 29]. Furthermore,
derivative analysis confirms that this process
intrinsically converts multiplicative noise into an
additive form. This critical transformation, which
simplifies subsequent denoising while preserving
structural integrity, is mathematically expressed
as

dliog(x,y) 1
™ Uorig(x, y) + 8)Infid M

dlorigex,y)

where  dllog(x,y)/dl,;,(x,y) represents the
derivative of the logarithmic transformation at
position (x,y), indicating the local gain applied
during mapping.

(
0
Ww
Vdisp|ay = < 255 Vgrayscale V_VV(VWL — T)
255

where Vi, is the display value, WL represents
the window level that determines the dynamic
range centered for display, and WW denotes the
window width that controls the contrast by
determining the width of the range of values
mapped to the display range. This essential
visualization technique enables inspectors to
navigate the vast intensity space by dynamically
adjusting the displayed contrast and brightness,
effectively isolating regions of interest within the
16-bit data for detailed examination[20, 31].

By applying a high gain to the dark regions and a
low gain to the bright regions, this derivative
enables adaptive enhancement across the
dynamic range, directly overcoming the
limitations of the uniform linear gain. Moreover,
the logarithmic operation renders the noise
additive, allowing for its effective removal while
protecting critical spatial details from the blurring
effects of spatial smoothing. Together, these
properties establish a robust method for reducing
the influence of noise in DR-image-detail
enhancement.

2.3 DR Image Display Principles

DR images are often stored in Digital Imaging and
Communications in Medicine (DICOM) files with
a 16-bit grayscale[4, 30]. The 16-bit grayscale
depth of DR images far exceeds the 256 levels
available in standard 8-bit displays. This
fundamental  disparity creates a critical
visualization bottleneck that can obscure subtle
defect signatures and material variations essential
for an accurate nondestructive evaluation.
Practical visualization of DR images employs
window-level adjustments to accommodate
conventional display systems using the following
equation:

Ww
Vgrayscale <WL - T
WW 8
WL — T < Vgrayscale < WL + T i ®
Ww
Vgrayscale = WL + T

. PROPOSED METHOD
3.1 Methodological Principles

Fig. 1 depicts the overall architecture of the
proposed framework, which addresses the
fundamental challenges of industrial DR image
enhancement by  integrating logarithmic
transformation with a multiscale Laplacian
analysis. The proposed framework is initiated
with a logarithmic transformation of the input
image to compress its dynamic range and
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attenuate noise interference. A multiscale
representation is then constructed by convolving
the transformed image with Laplacian kernels of
progressively increasing sizes, generating a series
of response maps that capture the edge and detail
information across distinct spatial frequencies.
Subsequently, a pixel-importance coefficient map
is derived at each scale by comparing its Laplacian
response to a designated benchmark. These
comparative = measurements are processed

through a nonlinear activation function to ensure
numerical stability. The resulting coefficients
subsequently orchestrate a pixel-level fusion
process, wherein multiscale detail components are
adaptively and proportionally integrated into the
logarithmically  transformed  image. The
procedure culminates in a reconstruction phase
accompanied by dynamic range normalization,
ultimately yielding an enhanced DR image with
fused pixels.

Original Image: Iil(x.y)

ol
o
Employ Logarithmic ; o Ll
Transformation to —
Suppress Noise Effects (1M 4 0%0+ 1%2

+(-1*5+ 0%4 + 1%2
+-1)*3+ 0% +1*5
=0

Convolved by
3%3 kernel

Dioplx, yyFlog,(Loselx, )+

Output gray level

Convolved by
5x3 kernel

Lo

Input gray level

Ilog(x’y)

Convolved by
nxn kernel

Build Multiscale Space Using
Laplacian Convolution Operator
with Different Kernel Size
Rx.)=hoelx, YK, aplace.k

Calculate Pixel-Importance Coefficient
a, (x,¥) = tanh(A(1 - W)A.& (x, 1))

Afr (x'l _)‘) - Rbnsc (xa y) T R,{ (x9 .1’)
Note: Rys(x,y) is the benchmark for analysis,
and Ry(x,y) is the Laplacian response at scale £.
* o(x,p)
Perform Multiscale Pixel-Level Fusion
F ‘k('x-}“):( 1 +a.’z(x zy))j log(x)y)

- 1 N
= ‘ Fﬂna\ (x,_]/‘) . [\:)g(.xﬁy)-i-ﬁ]mg(x’ y)zak (r'»'y)

=
+ Fﬁnal(x:y)
Reconstruct Enhanced DR Image
LenpancecdX.Y)=rOUNA (6553 SU Gt (3, Y }-L i)/
(Fimr'Fmiu))

N - WS TR 5 e

Fig. 1: Principle of Proposed Method

The key idea is to develop a mathematical
formulation that entirely obviates Gaussian
convolution while preserving the effective
enhancement performance. The detail detection
mechanism is derived from the fundamental
relationship between the Laplacian response and
the second-order directional derivative:

d’R(x,y)
ds?

where | V2R(x,y)| represents the magnitude of the
Laplacian response at pixel coordinates (x,y),
d*R(x,y)/ds* denotes the second directional
derivative along the gradient direction, and the
proportionality indicates that the Laplacian
magnitude  corresponds  directly to the

[VZR(x,y)| « # €)]

acceleration of intensity change along the gradient
directions, responding most strongly to locations
where intensity transitions occur rapidly, such as
at edges, corners, and fine texture patterns.

The Laplacian operator capitalizes on its
second-order nature to identify fine defects in
industrial DR images by highlighting localized
intensity transitions. This enables a detailed
enhancement scheme that performs pixel-level
adaptive fusion using importance coefficients
from multiscale Laplacian responses, as follows:

1 N
Fina (6,9) =3 ) (1+ @, (5 )) hag(x,) (10)
k=1
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where Fg,.(x,y) represents the final pixel-level
fusion result at position (x,y), N denotes the total
number of scales, and ai(x,y) signifies the
pixel-importance coefficient at position (x,y) and
scale k. This formulation represents a
sophisticated blending of multiscale information,
in which the term (1+a(x,y)) functions as an
adaptive gain factor that varies spatially and
across different scales. When a,(x,y) assumes
positive values, indicating the presence of
significant details at scale k, the gain increases to
enhance these details. Conversely, when a.(x,y)
takes negative values, suggesting the absence of
meaningful details, the gain decreases to suppress
the noise or irrelevant variations.

3.2 Method for Calculating Pixel-Level Adaptive
Fusion Coefficient

The pixel-importance coefficient serves as the
pixel-level adaptive fusion coefficient. It plays a
pivotal role in determining the appropriate
enhancement strength at each pixel location
across different scales, with the calculation
employing the hyperbolic tangent function for
adaptive coefficient generation as follows:

k

ay (x,y) = tanhiA(1 — N—-l-l)Ak o, y))# (11)
where tanh(-) denotes the hyperbolic tangent
function, Ai(x,y) represents the differences in
details between scale k and the benchmark for the
Laplacian response differential analysis at
position (x,y), A is a factor that controls the detail
enhancement sensitivity because A;(x,y) is often a
small value, and the term A(1-k/(IN+1)) adaptively
tunes Au(x,y) based on the fact that the
convolution result of a smaller Laplacian kernel
contains more important information than a
larger one. A higher A enhances the contrast but
loses some extremely fine features. Empirical
evidence suggests that A typically ranges from 3N
to 7N.

According to Laplace theory, larger Laplace
kernels preserve global textures, whereas smaller
Laplace kernels retain local details. Based on this
principle, the physical implication of Equation
(11) is that the greater the deviation of the
convolutional responses using Laplace kernels of

different sizes relative to the Laplacian response
analytical baseline, the more detailed the
information contained in the pixel, and the more
critical it becomes for enhancing details.

In Equation (11), the hyperbolic tangent function
serves as a smooth, bounded activation function
that converts raw detail differences into
normalized importance coefficients within the
range (-1,1). The characteristic S-shaped curve of
this function provides several advantageous
properties: (1) for small detail differences, it
operates in an approximately linear region,
delivering a proportional response to subtle
variations; (2) for large differences, it saturates to
+1, preventing over-enhancement that could
introduce artificial artifacts or unnatural
appearances. This saturation behavior is crucial
for maintaining visually coherent results while
providing a robust enhancement. The parameter A
controls the steepness of the transition between
the linear and saturated regions, effectively
determining the sensitivity to detail variations
and allowing adjustment based on specific image
characteristics and enhancement requirements.

Based on the principle of Laplacian response, the
method for calculating the differences in details is
as follows:

Ak(x:y) = Rbase (ny) - Rk(ny)#

where Ry,.(xy) is the benchmark for the
Laplacian response differential analysis, which is
initialized with zeros and becomes the
convolution result of the minimal Laplacian
kernel once the Laplacian operation is performed,
and R,(x,y) represents the Laplacian response at
scale k and position (x,y), obtained by convolving
the image with the kth Laplacian kernel.

(12)

Based on Equation (12), positive values of A.(x,y)
indicate that the finest-scale kernel detects details
that are not captured by the larger kernel,
suggesting the presence of fine-scale features such
as small defects or sharp edges, whereas negative
values of A(x,y) suggest that the larger kernel
responds more strongly, indicating the presence
of larger-scale structures or more gradual
variations in the intensity. This multiscale
difference approach effectively separates the
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details of different spatial extents, enabling the
targeted enhancement of specific feature sizes
without  affecting others and providing
comprehensive coverage across the spectrum of
defect scales present in DR images.

R (x,y) = Ilog(x'y) * KLapIace,knk =12,..

where* denotes the convolution operation, and
Kiaplacer signifies the Laplacian kernel of size
(3+2k)x(3+2k) at scale k. This multiscale
methodology represents a fundamental departure
from Gaussian-based methods by applying
Laplacian kernels of different sizes directly to the
image, thereby preserving the high-frequency
information that would otherwise be attenuated
by the Gaussian smoothing. Each kernel size
responds preferentially to features of particular
spatial extents: smaller kernels capture fine
details and sharp edges, whereas larger kernels
respond to broader structures and more gradual
intensity  variations. = This  comprehensive

representation across feature scales is essential
for detecting the diverse range of defects

encountered in industrial DR applications.

3.3 Method for Building Multiscale Space using
Laplacian Convolution Operator

Multiscale analysis employs direct Laplacian
kernels of varying sizes applied to the
logarithmically transformed image, completely
avoiding the Gaussian convolution operations that
characterize traditional approaches.

, N# (13)

The kernel design follows a systematic expansion
methodology based on the Manhattan distance
weighting. For the standard 3x3 kernel:

0 1 0
Kis = |1 —4 1|#

0 1 0

(14)

where K., represents the 3x3 Laplacian kernel
with elements arranged to approximate the
discrete second-derivative operation. For 5x5 or
larger kernels, weights are assigned according to
the Manhattan distanced = |i- ¢| + |j - ¢|, where ¢
is half the kernel size. The 5x5 kernel design
exemplifies this approach.

-20 d=0
N )4 d=1 (15)
KssWD =91 g=2nli—c|=lj-c|=1"
0 otherwise
where K, (ij) represents the value of the 5x5 enhancement of homogeneous areas while

Laplacian kernel at position (i,j), d denotes the
Manhattan distance from the center, and c is the
center position index of the Laplacian kernel. All
kernels maintain the zero-sum property essential
for the Laplacian operation:

size—1 size—1

D D Kawei()) = 0% (16)

i=0 j=0

where the summation covers all kernel positions
(ij), the symbol size represents the Laplacian
kernel size, and the zero result ensures that the
kernels respond only to intensity variations in the
image and produce zero response in regions of
constant intensity, preventing unnecessary

amplifying variations associated with defects and
structural features.

The relationship between the kernel size and

spatial  frequency response follows the
approximate equation:
fe
~—# 17
fc Size an

where f, represents the cutoff frequency in cycles
per pixel and f, denotes a proportionality constant
typically ranging from 0.6 to 0.8. This
relationship reveals the fundamental connection
between the kernel size and the spatial
frequencies to which the kernel responds: smaller
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kernels with higher cutoff frequencies capture
finer details and sharper edges, whereas larger
kernels with lower cutoff frequencies respond to
broader features and more gradual intensity
variations. This frequency-space interpretation
provides a comprehensive framework for
understanding how different kernel sizes capture
distinct aspects of the image content, ensuring
that defects of various scales, from microscopic
cracks to larger structural anomalies, are
appropriately detected and enhanced.

3.4 Method for Performing Pixel-Level Multiscale
Adaptive Fusion

The pixel-level fusion process integrates enhanced
representations from all scales through a weighted
combination that adapts to the local detail

characteristics. The enhancement at each
individual scale follows the equation:
F(oy) = (1 + ap (x, y)liog(x, y)#  (18)

where F,(x,y) represents an enhanced image at
scale k. This equation embodies the core

N
1
Fira (4,) = g () + 3 leg(8.9) ) (2,94
k=1

where the expanded form clearly separates the
original image content I,(x,;y) from the

N
enhancement component %I log(x, ) ) ak(x, y).
k=1

This separation has significant implications: the
enhancement is proportional to both the local
intensity value and the cumulative importance
across all scales. Multiplication by I,,,(x,y) ensures
that the enhancement respects the local intensity
context: brighter regions receive stronger absolute
enhancement, whereas darker regions receive
more modest enhancement, maintaining a natural
appearance and preventing artificial-looking
results. The summation over the importance
coefficients ensures that the details detected at
multiple scales contribute collectively to the final
enhancement, providing comprehensive detail
amplification across the entire spectrum of
feature sizes present in the image.

enhancement mechanism at each scale, with the
term (1+a,(x,y)) functioning as a spatially varying
gain that amplifies or attenuates the pixel value
based on the coefficient importance. When
significant details are detected at a particular scale
(ai(x,y) > 0), the pixel value is amplified,
enhancing the visibility of these details. When no
significant details are present (ai(x,y)<0),
minimal or no enhancement is applied,
preventing the artificial amplification of noise or
irrelevant variations. This scale-specific approach
enables the targeted enhancement of features
based on their size characteristics, ensuring that
small defects receive appropriate enhancement
without adversely affecting larger structures.

Multiscale fusion combines all scales through
equal-weight averaging as follows:

N
1
Fiina (x,y) = ﬁz Fi(x,y)# (19)
=1

This equation can be algebraically expanded to
reveal the underlying enhancement mechanism as
follows:

(20)

35 Method for Reconstructing Enhanced DR
Image

The final enhanced image requires transformation
back to the conventional 16-bit grayscale
representation to ensure compatibility with
standard display systems and analysis tools. The
method used to reconstruct the final enhanced DR
Image is as follows:

Fiinal (%, ¥) = Fin )
—F min
#(21)
where I .ncea(%,y) represents the enhanced image
pixel value in grayscale levels at position (x,y),
round( ) signifies the rounding function to the
nearest integer, Fj,.(x,y) denotes the final fusion
result, F,;,=min(Fj,,) represents the minimum
value of the fusion result across the entire image,
F,..=max(Fs,,) indicates the maximum value of
the fusion result across the entire image, and
65535 corresponds to the maximum value in the

Ienhanced (%, ¥) = round (65535

F max
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65535 corresponds to the maximum value in the
16-bit representation.

This normalization process serves two crucial
purposes in the enhancement pipeline: first, it
maps the processed floating-point values back to
the standard 16-bit integer format required for
display, storage, and subsequent analysis; second,
it preserves the relative contrast relationships
established during the multiscale fusion. This
mapping preserves the proportional differences
between pixel values, ensuring both enhanced
visibility of details and maintained fidelity of
image intensity relationships. This preservation is
crucial for quantitative analysis, where absolute or
relative intensities have physical significance
pertaining to material properties, thickness
variations, or defect characteristics.

3.6 Gaussian Blurring Induced Detail Destruction
and Avoidance Strategy

Traditional multiscale analysis methods employ
Gaussian convolution for scale-space
representation, with the convolution operation
mathematically expressed as

lsmooin (%, ¥, 0) = 1(x,y) * G(i,j,0)#  (22)

where I,,m(x,y,0) represents the result of the
smoothed image at scale 0 and position (x,y), *
denotes the convolution operation, and G(i,j,0)
denotes the value of the Gaussian kernel at scale o
and position (7,j). The Gaussian kernel is defined
as follows:

2,:2

_i +j
e 22 #

G(i,j,0) = (23)

2102

where the term 1/(270°) serves as a normalization
constant. The frequency response of this
operation reveals its fundamental limitation:

F{G(i,j,0)} = e 200 @Dy (24)
where F{-} denotes the Fourier transform, and
(u,v) represents the spatial frequency coordinates.
This exponential decay demonstrates that the
Gaussian convolution systematically attenuates
the high-frequency components in the image, with
the degree of attenuation increasing with both the
spatial frequency and scale parameter o.

While this smoothing behavior is beneficial for
noise reduction, it fundamentally damages the
most critical information for industrial DR image
enhancement: fine details, sharp edges, and
high-frequency textures that correspond to defect
signatures and material discontinuities. This
creates an inherent trade-off in traditional
approaches—the same operation that reduces
noise also destroys important details, severely
limiting the effectiveness for industrial inspection
applications where preserving fine features is
essential for reliable defect detection.

The proposed method addresses this limitation by
eliminating Gaussian convolution operations and
employing a three-pronged alternative strategy:
(1) this comprehensive approach preserves the
high-frequency components containing critical
defect signatures while providing robust
enhancement through complementary processing
stages; (2) the logarithmic transformation handles
dynamic range issues without spatial averaging,
thereby maintaining finer detail integrity than
Gaussian convolution; and (3) the direct
multiscale Laplacian methodology extracts the
information of details across the spatial
frequencies without the blurring inherent using
Gaussian operations. The adaptive fusion process
achieves noise robustness through selective
enhancement rather than spatial smoothing,
representing a fundamentally different paradigm
for handling image quality challenges while
preserving the essential structural information.

V. RESULTS
4.1 Experimental Setup

The experimental study employed DR images
obtained from nondestructive welding quality
inspections to comprehensively validate the
proposed method. These DR images were sourced
from nondestructive testing across three welding
scenarios and were stored in DICOM format with
a dynamic range of 0-65535.

To rigorously assess the efficacy of the proposed
method, a comparative analysis was performed
using several DR image detail-enhancement
techniques. These benchmark methods included a
method based on histogram equalization (HE)
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[32], a method based on contrast-limited adaptive
histogram equalization (CLAHE) [33], a method
based on discrete wavelet transform (DWT) [34],
and a CNN-based detail enhancement method
(CNN-DEMD) [35]. It should be specifically noted
that the dataset employed for training the
CNN-DEMD benchmark comprised 1202 original
DR images sourced from nondestructive testing

augmentation, the dataset used to train the
CNN-DEMD comprised 3606 samples.

The experiment utilized 30 DR images of weld
nondestructive testing sourced from different
industrial sectors (10 DR images from each
sector) for comprehensive testing. All DR images
were acquired using the system shown in Fig. 2. A
brief summary of the 20 DR images is presented

results of weld quality. Following data in Table 2.
(b)
Fig. 2: Experimental platform: (a) hardware and (b) software
Table 2: A Brief Summary of the 30 DR Images
Source Resolution Major Defects Average Thickness/mm Total

Weld in ship plate 2048 x 1800  Linear defects and pores 33 10

Weld in boiler 1820 x 768 Linear defects and pores 38 10

Weld in oil pipeline 1280 x1024  Linear defects and pores 26 10

Three metrics were employed for the quantitative
assessment of detail-enhancement performance.
The Peak Signal-to-Noise Ratio (PSNR) functions
as a statistical metric for evaluating the ratio
between the maximum possible signal power and
the power of the corrupting noise, and is
commonly used for image quality assessment. The
Structural Similarity Index Measure (SSIM)
quantifies the perceived structural fidelity
between a processed image and its original,

unprocessed counterpart. The Spatial Frequency
(SF), which indicates the overall activity level in
an image, is used to measure the change rate of
intensity across pixels. Elevated SF values are
associated with sharper edge definitions and
richer textural details, correlating with superior
perceptual quality. The computations for PSNR,
SSIM, and SF are defined by Equations (25), (26),
and (27), respectively, as follows:

655352

PSNR(E,S) = 10log;,

25
Zi’:l ZX;V=1[E(X:}’)—S(X:}’)]2 ( )
WxH
Qugus + ¢1)(2ogs + ¢;) (26)

SSIM(E,S) =

(ug? + us? + ¢1) (052 + 052 + c3)
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(SF(E) = /Hg (E)? + V (E)?

W H-1
1

H =
¢(E) W
{ x=1y=1

XHZ Z[E(X'Y) — E(x,y + 1D]?

#

1

Ve (E) =

\

where PSNR(E, S) is the peak signal-to-noise ratio
of the image E relative to the image S, SSIM(E, S)
is the structural similarity index measure of the
image E relative to the image S, SF(E) is the
spatial frequency of the image E, H ;(E) computes
the horizontal gradient of the image E, V (E)
computes the vertical gradient of the image E, W
is the image width, H is the image height, M, is the
mean of the image E, ¢ . and ¢ , are two constants,
I is the mean of the image S, o, is the variance of
the image E, o is the variance of the image S, and
O, is the covariance of the images E and S.

The parameter configuration for the proposed
method utilized N=4 scales with kernel sizes
progressively increasing from 3x3 to 9xo,
enhancement factor A=5N=20 controlling detail

w-1 H
W xH Z Z[E(x’}’) —E(x+1,y)]?
x=1y=1

enhancement sensitivity, and logarithm base a=10
compressing the DR image grayscale. This
parameter set was determined through systematic
optimization of the experimental dataset to
achieve a balanced performance across different
image types and defect characteristics.

4.2 Objective Analysis

After applying several distinct methodologies for
detail enhancement to the DR images obtained
from three different sources, the processed results
are presented in Figs. 3—5. It should be noted that
the red-marked areas in these figures indicate
defect regions. For reference, although the entire
experiment comprised 30 images, only

representative samples from each source are
displayed here.

Fig. 3: Performance of different methods on a ship plate weld image: (1) original, (2) HE, (3) CLAHE,
(4) DWT, (5) CNN-DEMD, and (6) proposed method
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Fig. 4. Performance of proposed method against existing methods on a boiler weld image: (1) original,
(2) HE, (3) CLAHE, (4) DWT, (5) CNN-DEMD, and (6) proposed method

(@

Fig. 5: Performance of the proposed method against existing algorithms on an oil-pipeline weld image:
(1) original, (2) HE, (3) CLAHE, (4) DWT, (5) CNN-DEMD, and (6) proposed method

A visual examination of Figs. 2—4 reveals that the
proposed method achieves superior performance
compared with other algorithms, exhibiting
enhanced clarity, sharpness, fidelity, delicacy, and
artifact reduction compared with other

algorithms. This method effectively enhances
images via pixel-level adaptive fusion, leveraging
logarithmic transformation and a multiscale
Laplacian transform.

A Novel Detail-Enhancement Method for Industrial Digital Radiography via Gaussian-Free Multiscale Laplacian Adaptive Fusion

© 2025 Great Britain Journals Press

London Journal of Engineering Research

Volume 25 | Issue 5 | Compilation 1.0



London Journal of Engineering Research

4.3 Result Analysis

Notably, the proposed method achieved superior
performance, attaining the highest mean PSNR
across all three industrial weld inspection
scenarios—ship  plates, boilers, and oil
pipelines—with values of 26.12, 25.17, and 26.96,
respectively (Table 3). This reflects a statistically
significant and consistent enhancement over
existing techniques.

As illustrated in Table 3, performance escalates
progressively from conventional approaches such
as HE and CLAHE (PSNR: 11-15), through

moderate gains with DWT (~17—20), to a marked
improvement via CNN-DEMD (23-26). The
proposed method builds upon this trajectory,
delivering further gains.

Moreover, the proposed approach demonstrates
enhanced statistical robustness, exhibiting the
lowest standard deviation in PSNR across test
cases (0.68, 0.74, 0.71), as shown in Table 4. This
trend of declining variability—from traditional to
advanced techniques—culminates in the proposed
method, underscoring its stability and reliability.

Table 3: Average PSNR Across Different Enhancement Methods

DR Image Source HE CLAHE
Weld in ship plate 13.68 14.29
Weld in boiler 12.86 14.35
Weld in oil pipeline 11.53 15.18

DWT CNN-DEMD Proposed Method
19.33 24.89 26.12
17.87 23.38 25.17
20.12 25.57 20.96

Table 4: Standard Deviation of PSNR across different enhancement methods

DR Image Source HE CLAHE
Weld in ship plate 1.53 1.37
Weld in boiler 1.68 1.42
Weld in oil pipeline 1.71 1.29

DWT CNN-DEMD Proposed Method
1.15 0.82 0.68

1.23 0.87 0.74

1.08 0.93 0.71

A comparative analysis of the experimental results
(Tables 5 and 6) demonstrates the consistent
superiority of the proposed method in terms of
structural fidelity and robustness across all test
scenarios. As indicated in Table 5, the proposed
technique attained the highest mean Structural
Similarity Index Measure (SSIM) for welds from
ship plates (0.75), boilers (0.73), and oil pipelines
(0.76), reflecting more effective structural
preservation relative to the benchmark
approaches. The performance hierarchy remains
stable: the proposed method surpasses
CNN-DEMD, which in turn exceeds the Discrete
Wavelet Transform (DWT) method, whereas
conventional techniques such as Histogram
Equalization (HE) and CLAHE yield markedly
lower SSIM values.

This performance advantage is complemented by
enhanced robustness, quantified by the SSIM

standard deviations in Table 6. For the
challenging "Weld in ship plate" dataset, the
proposed method achieved the highest mean
SSIM and the lowest deviation (0.062), indicating
superior stability. A comparable trend was
observed for the boiler welds. Although the
deviation for oil pipeline welds (0.069) slightly
exceeded that of the DWT method (0.061), this
marginal trade-off was substantially offset by a
significant advantage in the mean SSIM (0.76 vs.
0.61). Collectively, the high mean SSIM and
generally low variance underscore the efficacy and
reliability of the proposed method in delivering
structurally faithful enhancements across various
industrial radiography contexts.
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Table 5: Average SSIM across different enhancement methods

DR Image Source HE CLAHE
Weld in ship plate 0.33 0.47
Weld in boiler 0.42 0.56
Weld in oil pipeline  0.38 0.49

DWT CNN-DEMD Proposed method

0.68 0.72 0.75
0.63 0.68 0.73
0.61 0.73 0.76

Table 6: Standard Deviation of SSIM across different enhancement methods

DR Image Source =~ HE CLAHE DWT CNN-DEMD Proposed method

Weld in ship plate 0.084 0.081 0.076 0.072 0.062
Weld in boiler 0.075 0.077  0.069 0.069 0.067
Weld in oil pipeline 0.073  0.068  0.061 0.064 0.069
As shown in Table 7, the proposed image The superior performance of the proposed

enhancement method consistently achieved the
highest average Spatial Frequency (SF) across all
three industrial weld inspection scenarios. For
welds in ship plates, boilers, and oil pipelines, SF
values of 18.86, 18.27, and 19.18 were attained,
respectively, indicating superior image clarity and
textural enhancement. A clear performance
hierarchy is observable: conventional techniques
like HE and CLAHE yield the lowest SF values
(9.84-13.76), followed by a  moderate
improvement with DWT (14.82-15.26). A
significant leap is realized by the CNN-DEMD
method (17.33-18.42), which the proposed
method subsequently surpasses.

method is coupled with its exceptional stability.
The standard deviation data presented in Table 8
consistently demonstrate the lowest or nearly
lowest variance in the SF output. With standard
deviations of 0.24, 0.21, and 0.23 for the
respective test cases, the method exhibited
remarkable robustness. This trend of decreasing
standard deviation from traditional to advanced
methods culminates in the proposed algorithm,

Table 7: Average SF across different enhancement methods

DR Image Source

Weld in ship plate 10.15 12.15
Weld in boiler 9.84 11.83
Weld in oil pipeline 11.33 13.76

HE CLAHE DWT

confirming its reliability in  minimizing
performance fluctuations while maximizing
spatial frequency.

CNN-DEMD  Proposed method
15.14 18.19 18.86
15.26 17.33 18.27
14.82 18.42 19.18

Table 8: Standard Deviation of SF across different enhancement methods

DR Image Source HE CLAHE
Weld in ship plate 0.53 0.43
Weld in boiler 0.55 0.41
Weld in oil pipeline 0.52 0.44

DWT CNN-DEMD Proposed method
0.33 0.23 0.24
0.31 0.26 0.21
0.32 0.22 0.23
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As quantified in Table 9, the proposed method
yields substantial PSNR enhancements across all
benchmarked image-enhancement techniques in
three welding inspection scenarios. Two principal
findings emerged: first, traditional methods,
notably HE and CLAHE, exhibited the most
marked relative gains, with PSNR increases
exceeding 75% and, in one case, surpassing 130%,
underscoring a pronounced performance gap
relative to the proposed technique. Second, and
more significantly, the method demonstrates
universal applicability, consistently refining even

advanced approaches, such as CNN-DEMD. The
modest yet consistent gains (approximately
4—8%) observed here are paradoxically indicative
of CNN-DEMD’s strong baseline performance,
thereby highlighting the proposed method’s
efficacy as a robust post-processing or integration
module. In summary, the results systematically
affirm the method’s capacity to markedly augment
conventional  algorithms  while delivering
measurable improvements to the state-of-the-art
deep learning models.

Table 9: The proposed method's enhancement of the PSNR for other methods

Compared Method Weld in Ship Plate /%
HE 00.94
CLAHE 82.79
DWT 35.13
CNN-DEMD 4.94

Weld in Boiler /%  Weld in Oil Pipeline /%
95.72 133.82
7540 77.60
40.85 34.00
7.66 5-44

As evidenced by the SSIM enhancement metrics
in Table 10, the proposed method consistently
improves the structural similarity across a
spectrum of benchmark techniques, following a
distinct and interpretable trend. The most
pronounced gains were observed with traditional
algorithms: HE achieved a remarkable 127.27%
improvement in "Weld in ship plate" and
100.00% in "Weld in oil pipeline," culminating in
a total improvement of 100.36%, whereas CLAHE
exhibited a 48.34% total gain. These results
indicate a strong compensatory effect on the
structural distortions inherent to conventional
approaches.

In contrast, enhancements for advanced methods,
such as DWT and CNN-DEMD, although

consistent, were more moderate (16.92% and
5.21%, respectively). This inverse correlation
between methodological sophistication and
improvement magnitude underscores the
proposed method’s capacity to deliver substantial
benefits for weaker algorithms while still
providing statistically meaningful refinements to
the state-of-the-art techniques.

In summary, the  consistent  positive
improvements validate the robustness and
general applicability of the proposed method as a
universal enhancer of structural fidelity in
welding inspection imagery.

Table 10: The proposed method's enhancement of the SSIM for other methods

Weld in Boiler /% Weld in Oil Pipeline /%

Compared Method = Weld in Ship Plate /%
HE 127.27
CLAHE 59.57
DWT 10.29
CNN-DEMD 4.17

73.81 100.00

30.36 55.10
15.87 24.59
7-35 4.11
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As demonstrated in Table 11, the proposed
method significantly enhanced the performance of
various techniques across multiple welding
inspection  scenarios. Notably, the most
substantial improvement was observed for the HE
method, with a total improvement of 80.26%,
reflecting considerable gains in weld detection

accuracy for ship plates (85.81%), boilers
(85.67%), and oil pipelines (69.29%).

Conversely, = CLAHE  exhibited  moderate
enhancement, achieving a 49.69% overall

improvement, although its absolute performance
remained lower, particularly in oil pipeline

contexts (39.39%). The DWT-based method
showed more limited gains, with a total
improvement of 24.57%, whereas CNN-DEMD
demonstrated the least improvement (4.41%),
indicating its inherent robustness and lower
susceptibility to further enhancement under the
proposed framework.

These results collectively underscore the
versatility and efficacy of the proposed method in
augmenting both traditional and advanced
techniques, with the degree of improvement being
inversely related to the baseline sophistication of
each compared method.

Table 11: The proposed method's enhancement of the SF for other methods

Compared Method Weld in Ship Plate /%
HE 85.81
CLAHE 55.23
DWT 24.57
CNN-DEMD 3.68

Weld in Boiler /%  Weld in Oil Pipeline /%
85.67 69.29
54.44 39-39
19.72 20.42
5.42 4.13

V. DISCUSSION

A Gaussian-free multiscale detail-enhancement
framework is proposed for industrial DR images
that fundamentally addresses the inherent
limitation of detail destruction in conventional
approaches using Gaussian convolution. The core
innovation lies in the integration of logarithmic
transformation with direct multiscale Laplacian
analysis, the development of adaptive importance
coefficients using hyperbolic tangent functions, a
systematic methodology for generating Laplacian
kernels, and achieving multiscale pixel-level
adaptive fusion. Collectively, these elements
establish a rigorous and mathematically coherent
framework for detail-preserving DR-image-detail
enhancement.

The experimental results demonstrate the efficacy
and general applicability of our method. The
proposed framework universally enhances the
established techniques—HE, CLAHE, DWT, and
CNN-DEMD—across diverse industrial weld
inspection scenarios (ship plate, boiler, and oil
pipeline). Most strikingly, it elevates the PSNR of
HE by 133.82% for the oil pipeline welds.

Substantial gains were also observed in the SSIM
(HE improved by 127.27% for ship plate welds)
and SF (HE enhanced by 85.81% for the same
application). Although the performance uplift
over more sophisticated methods, such as
CNN-DEMD, is more modest (e.g., 4.94—7.66%
for PSNR), the consistent positive enhancement
across all benchmarks underscores its robustness
as a superior preprocessing or integrated solution
for nondestructive testing.

The significant results achieved through
experimental validation include demonstrated
superiority in micron-scale defect detection,
robust performance across diverse industrial
applications and image -characteristics, and
practical implementation feasibility for real-time
inspection systems. The method's ability to
enhance detail visibility while preserving
structural integrity addresses a critical need in
industrial nondestructive testing, where reliable
defect detection must be balanced with
maintaining an accurate structural representation
for subsequent analysis and decision-making.
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This study had several limitations that warrant
consideration. First, the proposed framework was
developed and validated specifically on DR images
of weld defects; its efficacy on DR images from
other industrial sources (e.g., castings or
composite materials) remains unverified. Second,
despite its performance gains, the computational
complexity of the multiscale analysis requires
further optimization for real-time deployment in
resource-constrained environments. Finally, the
experimental validation, while demonstrating
robust results, was conducted on a limited
dataset, and large-scale comprehensive testing is
required to fully ascertain its generalizability.

Future research should prioritize three principal
avenues of investigation. First, efforts should be
directed toward broadening the scope of
application of the method to encompass a wider
array of industrial nondestructive testing (NDT)
scenarios, with a rigorous assessment of its
cross-domain robustness. Concurrently, dedicated
efforts will be channeled into algorithmic
refinement and implementation optimization to
improve the computational efficiency.
Furthermore, a more comprehensive evaluation
using large-scale, multi-source datasets will be
undertaken to thoroughly validate the
performance of the proposed method. This may
be supplemented by the development of adaptive
parameter strategies and their integration with
deep learning models to augment feature learning
capabilities.

VI.  CONCLUSION

To address the limitations inherent in existing
detail-enhancement techniques for industrial DR
images, this study introduces a novel
Gaussian-free detail-enhancement framework by
integrating logarithmic transformation and
multiscale Laplacian analysis. This method
fundamentally  departs from  traditional
Gaussian-based approaches by eliminating the
blur-inducing convolution operations. This study
establishes a new detail-enhancement paradigm
for industrial DR images through a multiscale,
pixel-level adaptive fusion mechanism that
directly and faithfully preserves critical image
details.

The superior performance and generalizability of
the framework were demonstrated through
rigorous quantitative evaluations. It achieves
unprecedented enhancement across diverse weld
inspection scenarios, elevating the PSNR of a
basic HE method by 133.82% for oil
pipeline-welds. Substantial gains in the SSIM (up
to 127.27%) and SF (up to 85.81%) further
confirmed its efficacy. Critically, it delivers
consistent, albeit more modest, improvements
over sophisticated benchmarks such as CLAHE,
DWT, and CNN-DEMD, underscoring its
robustness as a premier preprocessing or
integrated solution for nondestructive testing.

This study makes three pivotal contributions: (1)
it provides a highly effective technical foundation
with significant potential to transform quality
assurance in manufacturing; (2) it inaugurates a
Gaussian-free paradigm that prioritizes structural
fidelity, which is a critical requirement for
high-precision industrial applications; and (3) it
provides an adaptive pixel-level fusion technology
with precise control mechanisms for defect-
specific enhancements.
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