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ABSTRACT 

This study introduces a concise framework for 

detail enhancement in industrial digital 

radiography based on the mathematical 

integration of logarithmic transformation and 

multiscale Laplacian analysis. The proposed 

method utilizes multiscale adaptive pixel-level 

fusion with hyperbolic tangent-based coefficients 

to preserve microscale defects while enhancing 

subtle features throughout the dynamic range. 

Quantitative evaluations of diverse industrial 

welds, including ship plates, boilers, and oil 

pipelines, demonstrated substantial 

improvements. In oil pipeline weld inspections, 

the Peak Signal-to-Noise Ratio of the method 

based on Histogram Equalization increased by 

133.82%, whereas the Structural Similarity Index 

Measure and Spatial Frequency metrics exhibited 

gains of up to 127.27% and 85.81%, respectively. 

The framework's consistent, albeit moderate, 

performance gains over state-of-the-art deep 

learning methods across all benchmarks confirm 

its value not only as a robust and widely 

applicable tool but also as a superior 

preprocessing or integrated solution within 

nondestructive testing pipelines. 

Keywords: digital radiography, multiscale 

analysis, pixel-level fusion, image detail 

enhancement, nondestructive testing. 
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Table 1: List of Notations and Symbols 

Symbol Comment 

a Logarithm base 

c Center position index of Laplacian kernel 

d Manhattan distance from the center 

f(x,y) Continuous image intensity function at spatial coordinates (x,y) 

fc Cutoff frequency in cycles per pixel 

Ffinal(x,y)  Final fusion result of the pixel at coordinates (x,y) 

fk A proportionality constant typically ranging from 0.6 to 0.8 

Fk(x,y) Enhanced image at scale k 

Fmin Minimum value of the fusion result across the entire image 

Fmax Maximum value of the fusion result across the entire image 

G(i,j,σ) Value of Gaussian kernel at scale σ and position (i,j) 

 𝐻 Image height 

H(x,y) Mean curvature of the intensity surface at pixel (x,y) 

 𝐻
𝐺

𝐸( ) Horizontal gradient of the image  between the adjacent pixels in the same row 𝐸
I(x,y)  Discrete image intensity at pixel coordinates (x,y) 

Ienhanced(x,y) Enhanced image pixel value in grayscale levels at position (x,y) 
 

Symbol Comment 

Ilog(x, y) 

Iorig(x, y) 

Ismooth(x,y,σ) Smoothed image at scale � and position (x,y) 
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Pixel value at position (x, y) after the logarithmic transformation 

Original pixel value at position (x, y) 



 

Symbol Comment 
        

 

I. INTRODUCTION 

Industrial digital radiography (DR) has emerged 

as a critical technology for nondestructive 

evaluation in precision manufacturing sectors, 

including the aerospace, automotive, and nuclear 

power industries[1-3]. DR images characterized 

by pixel values spanning 0 to 65535 provide an 

extensive dynamic range for capturing subtle 

material variations while simultaneously 

presenting significant challenges for defect 

image enhancement techniques often encounter 

difficulties in balancing the competing 

requirements of noise suppression and detail 

preservation, particularly when addressing 

micron-scale defects that manifest as minimal 

intensity variations within complex industrial 

components[5-7]. 

The current landscape of industrial DR image 

enhancement reveals fundamental limitations in 
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detection and characterization[3, 4]. Conventional 

       ,  

K3×3 A standard 3×3 discrete Laplacian kernel 

K5×5(i,j) Value of the 5×5 Laplacian kernel at position (i,j) 

KLaplace,k Laplacian kernel of size (3+2k)×(3+2k) at scale k 

L(x,y)  Discrete Laplacian response at position (x,y) 

N Total number of scales 

 𝑃𝑆𝑁𝑅 𝐸, 𝑆( ) Peak signal-to-noise ratio of image  relative to image  𝐸 𝑆
round(⋅) Rounding function to the nearest integer 

Rbase(x,y) 

Benchmark for Laplacian response differential analysis that is initialized with

zeros and becomes the convolution result of the minimal Laplacian kernel once

the Laplacian operation is performed. 

Rk(x,y) 
Laplacian response at scale  and position (x,y), which uses the kth Laplacian𝑘
kernel to convolve the image 

size Laplacian kernel size 

 𝑆𝐹 𝐸( ) Spatial frequency of image  𝐸
 𝑆𝑆𝐼𝑀 𝐸, 𝑆( ) Structural similarity index measure of the image  relative to the image  𝐸 𝑆

tanh (⋅) Hyperbolic tangent function 

Vgrayscale Grayscale value of DR image 

 𝑉
𝐺

𝐸( ) Compute the vertical gradient of the image  𝐸
Vdisplay Display value 

 𝑊 Image width 

WL Window level 

WW Window width 

∇2
f(x,y) Laplacian operator at spatial coordinates (x,y) 

∂
2
f(x,y)/∂x

2
 Second-order partial derivatives in the respective spatial direction X 

∂
2
f(x,y)/∂y

2
 Second-order partial derivatives in the respective spatial direction Y 

∇2
G(x,y) the Laplacian of the intensity function at pixel (x,y) 

∇G(x,y)  the gradient vector field at pixel (x,y) 

|∇G(x,y)| the magnitude of the gradient vector at pixel (x,y) 

* Convolution operation 

|∇2
R(x,y)| Magnitude of the Laplacian response at pixel coordinates (x,y) 

d
2
R(x,y)/ds

2
 Second directional derivative along the gradient direction 

Δk(x,y) Differences in details between scale k and the benchmark for Laplacian response

a Logarithm base 

δ A small offset to avoid mathematical singularity at zero 

dIlog(x,y)/dIorig(x,y) Derivative of the logarithmic transformation at position (x,y) 

αk(x,y) Importance coefficient of the pixel at position (x,y) and scale k 

λ A factor that controls the detail enhancement sensitivity 

 𝐹{⋅} Fourier transform operator 

(u,v) Spatial frequency coordinates 



Gaussian-dependent multiscale analysis, while 

effective for noise reduction, intrinsically 

compromises fine structural details through the 

systematic attenuation of high-frequency 

components that are essential for defect 

characterization[3, 10]. Methods based on 

discrete wavelet transform (DWT) encounter 

challenges in optimal basis selection and often 

introduce reconstruction artifacts when 

processing complex defect morphologies[11-13]. 

Histogram equalization (HE) and contrast-limited 

adaptive histogram equalization (CLAHE) 

techniques, despite their computational 

simplicity, frequently produce unnatural contrast 

amplification and fail to preserve subtle intensity 

gradients that are critical for accurate defect 

assessment[14-16]. Although deep learning (DL) 

approaches, such as methods based on 

convolutional neural network (CNN), are 

promising in certain domains, they face 

substantial limitations, including extensive data 

requirements, limited interpretability, poor 

generalization across diverse industrial scenarios, 

and a lack of physical interpretability[9, 10, 17, 

18]. Furthermore, these methods collectively 

exhibit significant computational complexity, and 

their parameter sensitivity necessitates extensive 

manual optimization, undermining operational 

efficiency in industrial environments[3, 10, 19, 

20]. These multifaceted challenges underscore the 

critical need for a fundamentally new paradigm 

that can simultaneously address the competing 

demands of computational efficiency, physical 

interpretability, and uncompromised detail 

preservation[6, 21, 22]. 

To address these challenges, this study introduces 

a paradigm-shifting framework characterized by a 

Gaussian-free architecture and pixel-level fusion 

technology. The proposed method establishes a 

novel integration of perceptually aligned 

logarithmic transformation with direct multiscale 

Laplacian analysis, achieving unprecedented 

detail preservation while maintaining 

computational tractability. The framework 

incorporates an adaptive fusion mechanism 

governed by hyperbolic tangent importance 

coefficients, enabling the selective enhancement 

of defect regions while preserving structural 

integrity through physically interpretable 

operations. This approach ensures complete 

mathematical transparency and eliminates the 

black-box characteristics that impede the 

industrial adoption of many contemporary 

techniques. The principal contributions of this 

study encompass three key innovations: (1) a 

comprehensive Gaussian-free mathematical 

framework that fundamentally redefines 

multiscale enhancement while preserving 

computational efficiency; (2) an adaptive 

pixel-level fusion technology with precise control 

mechanisms for defect-specific enhancement; and 

(3) a rigorous theoretical foundation with 

complete mathematical derivations validated 

across diverse industrial applications. These 

advances collectively provide an 

engineering-friendly solution that balances the 

enhancement efficacy with the ease of 

implementation while maintaining full physical 

interpretability throughout the enhancement 

pipeline. 

This paper is systematically organized to present a 

novel detail-enhancement method for industrial 

DR images using multiscale pixel-level fusion 

techniques. Section 2 establishes the theoretical 

foundation by reviewing the fundamental 

concepts of Laplacian transform theory, 

differential geometric interpretations, discrete 

implementations, logarithmic transformation 

principles, and industrial DR imaging 

characteristics. Section 3 introduces the proposed 

methodology in detail, beginning with the 

fundamental principles, followed by the 

mathematical formulation of the pixel-level 

adaptive fusion coefficient, construction of 

multiscale space using Laplacian convolution 

operator, multiscale pixel-level fusion 

methodology, enhanced image reconstruction 

procedures, and strategic avoidance of 

Gaussian-induced detail destruction. Section 4 

presents the experimental setup and analytical 

methodologies employed for the validation. 

Section 5 discusses the experimental results and 

provides a comprehensive analysis of the 

method's performance, limitations, and potential 

improvements. Finally, Section 6 concludes the 
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several methodological approaches[3, 8, 9]. 



continuous image intensity function at spatial 

coordinates (x,y), ∂
2
f(x,y)/∂x

2
 indicates the 

second-order partial derivatives in the respective 

spatial direction X, and ∂
2
f(x,y)/∂y

2 
indicates the 

second-order partial derivatives in the respective 

spatial direction Y.  

The discrete implementation employs central 

difference approximations to achieve 

computational efficiency while maintaining the 

mathematical accuracy: 

 

 

 

 
 (3) 

where I(x,y) represents the discrete image intensity at pixel coordinates (x,y), and I(x+1,y), I(x-1,y), 

I(x,y+1), and I(x,y-1) denote the intensity values at adjacent pixel positions. The composite discrete 

Laplacian operator combines these approximations as follows: 

  

 

         

      (4) 

where L(x,y)  represents the discrete Laplacian 

response at position (x,y).  

The Laplacian transform effectively computes the 

difference between each pixel and its local 

neighborhood average, functioning as a high-pass 

filter that amplifies regions with significant 

intensity variations and suppresses homogeneous 

areas. It captures the essence of the local 

curvature in intensity surfaces by quantifying how 

the average value of a function in the 

neighborhood of a point differs from its value at 

the point. 

The geometric interpretation of the Laplacian 

operator reveals its profound connection to 

surface curvature characteristics [26, 27]. This 

relationship is formalized by the mean curvature 

equation: 

           (5) 

where H(x,y) represents the mean curvature of 

the intensity surface at pixel (x,y), ∇2
G(x,y) 

denotes the Laplacian of the intensity function at 

pixel (x,y), ∇G(x,y) represents the gradient 

vector field at pixel (x,y), and |∇G(x,y)| indicates 

the magnitude of the gradient vector at pixel (x,y). 

This mathematical relationship demonstrates that 

Laplacian responses correlate directly with the 

local curvature of the intensity landscape, 

generating strong outputs in regions with high 

curvature, such as edges, corners, and fine details, 

while producing minimal responses in relatively 

flat homogeneous areas. 

2.2   Logarithmic Transformation Theory 

The logarithmic transformation addresses the 

fundamental challenge of a high dynamic range in 

industrial DR images through nonlinear mapping, 

which compresses the extensive intensity range 

while preserving the relative contrast 

 

𝜕𝜕2𝑆𝑆(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2 ≈ 𝑆𝑆(𝑥𝑥 + 1, 𝑦𝑦) − 2𝑆𝑆(𝑥𝑥,𝑦𝑦) + 𝑆𝑆(𝑥𝑥 − 1,𝑦𝑦)#

𝜕𝜕2𝑆𝑆(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦2 ≈ 𝑆𝑆(𝑥𝑥,𝑦𝑦 + 1)− 2𝑆𝑆(𝑥𝑥,𝑦𝑦) + 𝑆𝑆(𝑥𝑥, 𝑦𝑦 − 1)#

 (2) 

where ∇2
f(x,y) denotes the Laplacian operator at 

spatial coordinates (x,y), f(x,y) represents the 

 

II. RELATED WORK 

2.1   Laplacian Transform Theory 

The Laplacian transform is a fundamental 

mathematical construct in image processing that 

serves as a second-order differential operator that 

characterizes local intensity variations through 

the divergence measurement of the gradient 

field[23-25]. The continuous two-dimensional 

equation expresses this relationship as follows: 

 (1) ∇2𝑓𝑓(𝑥𝑥,𝑦𝑦) =
𝜕𝜕2𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕 2 #

𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑆𝑆(𝑥𝑥 + 1, 𝑦𝑦) + 𝑆𝑆(𝑥𝑥 − 1,𝑦𝑦) + 𝑆𝑆(𝑥𝑥,𝑦𝑦 + 1) + 𝑆𝑆(𝑥𝑥, 𝑦𝑦 − 1) − 4𝑆𝑆(𝑥𝑥, 𝑦𝑦)#

𝐻𝐻(𝑥𝑥,𝑦𝑦) =
∇2𝐺𝐺(𝑥𝑥, 𝑦𝑦)

2(1 + |∇𝐺𝐺(𝑥𝑥,𝑦𝑦)|2)3/2 #

paper by summarizing the key findings and 

 outlining future research directions.  
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relationships. The mathematical equation 

defining this transformation is as follows: 

  (6) 

where Iorig(x, y) is the original pixel value at 

position (x, y),  Ilog(x, y) represents the pixel value 

at position (x, y) after the logarithmic 

transformation, a denotes the logarithm base, and 

δ provides a small offset to avoid mathematical 

singularity at zero.  

The transformation employs a compressive 

nonlinearity to enhance contrast in dark regions 

and prevent saturation in bright areas, thereby 

directly addressing the challenge of defects 

distributed across the full intensity spectrum in 

industrial DR imaging[28, 29]. Furthermore, 

derivative analysis confirms that this process 

intrinsically converts multiplicative noise into an 

additive form. This critical transformation, which 

simplifies subsequent denoising while preserving 

structural integrity, is mathematically expressed 

as 

       (7) 

where dIlog(x,y)/dIorig(x,y) represents the 

derivative of the logarithmic transformation at 

position (x,y), indicating the local gain applied 

during mapping.  

By applying a high gain to the dark regions and a 

low gain to the bright regions, this derivative 

enables adaptive enhancement across the 

dynamic range, directly overcoming the 

limitations of the uniform linear gain. Moreover, 

the logarithmic operation renders the noise 

additive, allowing for its effective removal while 

protecting critical spatial details from the blurring 

effects of spatial smoothing. Together, these 

properties establish a robust method for reducing 

the influence of noise in DR-image-detail 

enhancement. 

2.3   DR Image Display Principles 

DR images are often stored in Digital Imaging and 

Communications in Medicine (DICOM) files with 

a 16-bit grayscale[4, 30]. The 16-bit grayscale 

depth of DR images far exceeds the 256 levels 

available in standard 8-bit displays. This 

fundamental disparity creates a critical 

visualization bottleneck that can obscure subtle 

defect signatures and material variations essential 

for an accurate nondestructive evaluation. 

Practical visualization of DR images employs 

window-level adjustments to accommodate 

conventional display systems using the following 

equation: 

 

 

 

 

𝑆𝑆log(𝑥𝑥, 𝑦𝑦) = log𝑎𝑎⁡(𝑆𝑆orig(𝑥𝑥,𝑦𝑦) + 𝛿𝛿)#

d𝑆𝑆log(𝑥𝑥, 𝑦𝑦)
d𝑆𝑆orig(𝑥𝑥 ,𝑦𝑦 )

=
1

(𝑆𝑆orig(𝑥𝑥, 𝑦𝑦) + 𝛿𝛿)ln⁡𝑎𝑎 #

𝑉𝑉display =

⎩
⎪⎪
⎨

⎪⎪
⎧0 𝑉𝑉grayscale ≤ WL −

WW
2

255
𝑉𝑉grayscale − (WL − WW

2
)

WW WL −
WW

2 < 𝑉𝑉grayscale < WL +
WW

2

255 𝑉𝑉grayscale ≥ WL +
WW

2

�#

 

where Vdisplay is the display value, WL represents 

the window level that determines the dynamic 

range centered for display, and WW denotes the 

window width that controls the contrast by 

determining the width of the range of values 

mapped to the display range. This essential 

visualization technique enables inspectors to 

navigate the vast intensity space by dynamically 

adjusting the displayed contrast and brightness, 

effectively isolating regions of interest within the 

16-bit data for detailed examination[20, 31]. 

III. PROPOSED METHOD 

3.1   Methodological Principles 

Fig. 1 depicts the overall architecture of the 

proposed framework, which addresses the 

fundamental challenges of industrial DR image 

enhancement by integrating logarithmic 

transformation with a multiscale Laplacian 

analysis. The proposed framework is initiated 

with a logarithmic transformation of the input 

image to compress its dynamic range and 
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      (8) 



 

 

 

 

 

 

 

 

 

attenuate noise interference. A multiscale 

representation is then constructed by convolving 

the transformed image with Laplacian kernels of 

progressively increasing sizes, generating a series 

of response maps that capture the edge and detail 

information across distinct spatial frequencies. 

Subsequently, a pixel-importance coefficient map 

is derived at each scale by comparing its Laplacian 

response to a designated benchmark. These 

comparative measurements are processed 

through a nonlinear activation function to ensure 

numerical stability. The resulting coefficients 

subsequently orchestrate a pixel-level fusion 

process, wherein multiscale detail components are 

adaptively and proportionally integrated into the 

logarithmically transformed image. The 

procedure culminates in a reconstruction phase 

accompanied by dynamic range normalization, 

ultimately yielding an enhanced DR image with 

fused pixels. 

 

Fig. 1: Principle of Proposed Method 

The key idea is to develop a mathematical 

formulation that entirely obviates Gaussian 

convolution while preserving the effective 

enhancement performance. The detail detection 

mechanism is derived from the fundamental 

relationship between the Laplacian response and 

the second-order directional derivative: 

    (9) 

where |∇2
R(x,y)| represents the magnitude of the 

Laplacian response at pixel coordinates (x,y), 

d
2
R(x,y)/ds

2
 denotes the second directional 

derivative along the gradient direction, and the 

proportionality indicates that the Laplacian 

magnitude corresponds directly to the 

acceleration of intensity change along the gradient 

directions, responding most strongly to locations 

where intensity transitions occur rapidly, such as 

at edges, corners, and fine texture patterns.  

The Laplacian operator capitalizes on its 

second-order nature to identify fine defects in 

industrial DR images by highlighting localized 

intensity transitions. This enables a detailed 

enhancement scheme that performs pixel-level 

adaptive fusion using importance coefficients 

from multiscale Laplacian responses, as follows: 

 
  (10) 

 

  |∇2𝑃𝑃(𝑥𝑥,𝑦𝑦)| ∝ �
d2𝑃𝑃(𝑥𝑥,𝑦𝑦)

d𝑠𝑠2 �#

𝑆𝑆final(𝑥𝑥, 𝑦𝑦) =
1
𝑃𝑃�  (1 + 𝛼𝛼𝑘𝑘(𝑥𝑥,𝑦𝑦))

𝑃𝑃

𝑘𝑘=1

  𝑆𝑆log(𝑥𝑥, 𝑦𝑦)
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where Ffinal(x,y) represents the final pixel-level 

fusion result at position (x,y), N denotes the total 

number of scales,  and αk(x,y) signifies the 

pixel-importance coefficient at position (x,y) and 

scale k. This formulation represents a 

sophisticated blending of multiscale information, 

in which the term (1+αk(x,y)) functions as an 

adaptive gain factor that varies spatially and 

across different scales. When αk(x,y) assumes 

positive values, indicating the presence of 

significant details at scale k, the gain increases to 

enhance these details. Conversely, when αk(x,y) 

takes negative values, suggesting the absence of 

meaningful details, the gain decreases to suppress 

the noise or irrelevant variations.  

3.2   Method for Calculating Pixel-Level Adaptive 
Fusion Coefficient 

The pixel-importance coefficient serves as the 

pixel-level adaptive fusion coefficient. It plays a 

pivotal role in determining the appropriate 

enhancement strength at each pixel location 

across different scales, with the calculation 

employing the hyperbolic tangent function for 

adaptive coefficient generation as follows: 

   (11) 

where tanh(⋅) denotes the hyperbolic tangent 

function, Δk(x,y) represents the differences in 

details between scale k and the benchmark for the 

Laplacian response differential analysis at 

position (x,y), λ is a factor that controls the detail 

enhancement sensitivity  because Δk(x,y) is often a 

small value, and the term λ(1-k/(N+1)) adaptively 

tunes Δk(x,y) based on the fact that the 

convolution result of a smaller Laplacian kernel 

contains more important information than a 

larger one. A higher λ enhances the contrast but 

loses some extremely fine features. Empirical 

evidence suggests that λ typically ranges from 3N 

to 7N.  

According to Laplace theory, larger Laplace 

kernels preserve global textures, whereas smaller 

Laplace kernels retain local details. Based on this 

principle, the physical implication of Equation 

(11) is that the greater the deviation of the 

convolutional responses using Laplace kernels of 

analytical baseline, the more detailed the 

information contained in the pixel, and the more 

critical it becomes for enhancing details. 

In Equation (11), the hyperbolic tangent function 

serves as a smooth, bounded activation function 

that converts raw detail differences into 

normalized importance coefficients within the 

range (-1,1). The characteristic S-shaped curve of 

this function provides several advantageous 

properties: (1) for small detail differences, it 

operates in an approximately linear region, 

delivering a proportional response to subtle 

variations; (2) for large differences, it saturates to 

±1, preventing over-enhancement that could 

introduce artificial artifacts or unnatural 

appearances. This saturation behavior is crucial 

for maintaining visually coherent results while 

providing a robust enhancement. The parameter λ 

controls the steepness of the transition between 

the linear and saturated regions, effectively 

determining the sensitivity to detail variations 

and allowing adjustment based on specific image 

characteristics and enhancement requirements. 

Based on the principle of Laplacian response, the 

method for calculating the differences in details is 

as follows: 

   (12) 
 

where Rbase(x,y) is the benchmark for the 

Laplacian response differential analysis, which is 

initialized with zeros and becomes the 

convolution result of the minimal Laplacian 

kernel once the Laplacian operation is performed, 

and Rk(x,y) represents the Laplacian response at 

scale k and position (x,y), obtained by convolving 

the image with the kth Laplacian kernel. 

Based on Equation (12), positive values of Δk(x,y) 

indicate that the finest-scale kernel detects details 

that are not captured by the larger kernel, 

suggesting the presence of fine-scale features such 

as small defects or sharp edges, whereas negative 

values of Δk(x,y) suggest that the larger kernel 

responds more strongly, indicating the presence 

of larger-scale structures or more gradual 

variations in the intensity. This multiscale 

difference approach effectively separates the 

 

𝛼𝛼𝑘𝑘(𝑥𝑥, 𝑦𝑦) = tanh⁡(𝜆𝜆(1 −
𝑘𝑘

𝑃𝑃 + 1)Δ𝑘𝑘(𝑥𝑥, 𝑦𝑦))#

Δ𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑃𝑃base (𝑥𝑥, 𝑦𝑦) − 𝑃𝑃𝑘𝑘(𝑥𝑥, 𝑦𝑦)#

different sizes relative to the Laplacian response 

A Novel Detail-Enhancement Method for Industrial Digital Radiography via Gaussian-Free Multiscale Laplacian Adaptive Fusion

L
on

d
on

 J
ou

rn
al

 o
f 

E
n

gi
n

ee
ri

n
g 

R
es

ea
rc

h

©2025 Great Britain Journals Press Volume 25 | Issue 5 | Compilation 1.0 33



 

details of different spatial extents, enabling the 

targeted enhancement of specific feature sizes 

without affecting others and providing 

comprehensive coverage across the spectrum of 

defect scales present in DR images. 

3.3  Method for Building Multiscale Space using 
Laplacian Convolution Operator 

Multiscale analysis employs direct Laplacian 

kernels of varying sizes applied to the 

logarithmically transformed image, completely 

avoiding the Gaussian convolution operations that 

characterize traditional approaches. 

 

 

       
        (13) 

where * denotes the convolution operation, and 

KLaplace,k signifies the Laplacian kernel of size 

(3+2k)×(3+2k) at scale k. This multiscale 

methodology represents a fundamental departure 

from Gaussian-based methods by applying 

Laplacian kernels of different sizes directly to the 

image, thereby preserving the high-frequency 

information that would otherwise be attenuated 

by the Gaussian smoothing. Each kernel size 

responds preferentially to features of particular 

spatial extents: smaller kernels capture fine 

details and sharp edges, whereas larger kernels 

respond to broader structures and more gradual 

intensity variations. This comprehensive 

representation across feature scales is essential 

The kernel design follows a systematic expansion 

methodology based on the Manhattan distance 

weighting. For the standard 3×3 kernel: 

   (14) 

where K3×3 represents the 3×3 Laplacian kernel 

with elements arranged to approximate the 

discrete second-derivative operation. For 5×5 or 

larger kernels, weights are assigned according to 

the Manhattan distance d = |i - c| + |j - c|, where c 

is half the kernel size. The 5×5 kernel design 

exemplifies this approach. 

 

 

 

     (15) 

where K5×5(i,j) represents the value of the 5×5 

Laplacian kernel at position (i,j), d denotes the 

Manhattan distance from the center, and c is the 

center position index of the Laplacian kernel. All 

kernels maintain the zero-sum property essential 

for the Laplacian operation: 

  (16) 

where the summation covers all kernel positions 

(i,j), the symbol size represents the Laplacian 

kernel size, and the zero result ensures that the 

kernels respond only to intensity variations in the 

image and produce zero response in regions of 

constant intensity, preventing unnecessary 

enhancement of homogeneous areas while 

amplifying variations associated with defects and 

structural features. 

The relationship between the kernel size and 

spatial frequency response follows the 

approximate equation: 

                   (17) 

where fc represents the cutoff frequency in cycles 

per pixel and fk denotes a proportionality constant 

typically ranging from 0.6 to 0.8. This 

relationship reveals the fundamental connection 

between the kernel size and the spatial 

frequencies to which the kernel responds: smaller 

 

𝑃𝑃𝑘𝑘(𝑥𝑥, 𝑦𝑦) = 𝑆𝑆log(𝑥𝑥,𝑦𝑦) ∗ 𝐾𝐾Laplace,𝑘𝑘 , 𝑘𝑘 = 1,2, … ,𝑃𝑃#

for detecting the diverse range of defects 

encountered in industrial DR applications. 

 

𝐾𝐾3×3 = �
0 1 0
1 −4 1
0 1 0

�#

𝐾𝐾5×5(𝑖𝑖, 𝑗𝑗) = �

−20 𝑑𝑑 = 0
4 𝑑𝑑 = 1
1 𝑑𝑑 = 2 ∧ |𝑖𝑖 − 𝑐𝑐| = |𝑗𝑗 − 𝑐𝑐| = 1
0 otherwise

�#

�  
size−1

𝑖𝑖=0

  �  
size−1

𝑗𝑗=0

 𝐾𝐾Laplace,𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 0# 𝑓𝑓𝑐𝑐 ≈
𝑓𝑓𝑘𝑘

size #
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kernels with higher cutoff frequencies capture 

finer details and sharper edges, whereas larger 

kernels with lower cutoff frequencies respond to 

broader features and more gradual intensity 

variations. This frequency-space interpretation 

provides a comprehensive framework for 

understanding how different kernel sizes capture 

distinct aspects of the image content, ensuring 

that defects of various scales, from microscopic 

cracks to larger structural anomalies, are 

appropriately detected and enhanced. 

3.4  Method for Performing Pixel-Level Multiscale 
Adaptive Fusion  

The pixel-level fusion process integrates enhanced 

representations from all scales through a weighted 

combination that adapts to the local detail 

characteristics. The enhancement at each 

individual scale follows the equation: 

 (18) 

where Fk(x,y) represents an enhanced image at 

scale k. This equation embodies the core 

enhancement mechanism at each scale, with the 

term (1+αk(x,y)) functioning as a spatially varying 

gain that amplifies or attenuates the pixel value 

based on the coefficient importance. When 

significant details are detected at a particular scale 

(αk(x,y) > 0), the pixel value is amplified, 

enhancing the visibility of these details. When no 

significant details are present (αk(x,y)≤0), 

minimal or no enhancement is applied, 

preventing the artificial amplification of noise or 

irrelevant variations. This scale-specific approach 

enables the targeted enhancement of features 

based on their size characteristics, ensuring that 

small defects receive appropriate enhancement 

without adversely affecting larger structures. 

Multiscale fusion combines all scales through 

equal-weight averaging as follows: 

   (19) 

This equation can be algebraically expanded to 

reveal the underlying enhancement mechanism as 

follows: 

 

                  (20) 

where the expanded form clearly separates the 

original image content Ilog(x,y) from the 

enhancement component .  
1
𝑁 𝐼

𝑙𝑜𝑔
(𝑥, 𝑦)

𝑘=1

𝑁

∑  α
𝑘
(𝑥, 𝑦)

This separation has significant implications: the 

enhancement is proportional to both the local 

intensity value and the cumulative importance 

across all scales. Multiplication by Ilog(x,y) ensures 

that the enhancement respects the local intensity 

context: brighter regions receive stronger absolute 

enhancement, whereas darker regions receive 

more modest enhancement, maintaining a natural 

appearance and preventing artificial-looking 

results. The summation over the importance 

coefficients ensures that the details detected at 

multiple scales contribute collectively to the final 

enhancement, providing comprehensive detail 

amplification across the entire spectrum of 

feature sizes present in the image. 

3.5 Method for Reconstructing Enhanced DR 
Image 

The final enhanced image requires transformation 

back to the conventional 16-bit grayscale 

representation to ensure compatibility with 

standard display systems and analysis tools. The 

method used to reconstruct the final enhanced DR 

Image is as follows: 

 (21) 
where Ienhanced(x,y) represents the enhanced image 

pixel value in grayscale levels at position (x,y), 

round(⋅) signifies the rounding function to the 

nearest integer, Ffinal(x,y) denotes the final fusion 

result, Fmin=min(Ffinal) represents the minimum 

value of the fusion result across the entire image, 

Fmax=max(Ffinal) indicates the maximum value of 

the fusion result across the entire image, and 

65535 corresponds to the maximum value in the 

 

𝑆𝑆𝑘𝑘(𝑥𝑥, 𝑦𝑦) = (1 + 𝛼𝛼𝑘𝑘(𝑥𝑥, 𝑦𝑦))𝑆𝑆log(𝑥𝑥, 𝑦𝑦)#
𝑆𝑆final(𝑥𝑥, 𝑦𝑦) =

1
𝑃𝑃�  

𝑃𝑃

𝑘𝑘=1

 𝑆𝑆𝑘𝑘(𝑥𝑥, 𝑦𝑦)#

𝑆𝑆final(𝑥𝑥, 𝑦𝑦) = 𝑆𝑆log(𝑥𝑥,𝑦𝑦) +
1
𝑃𝑃 𝑆𝑆log(𝑥𝑥,𝑦𝑦)� 

𝑃𝑃

𝑘𝑘=1

 𝛼𝛼𝑘𝑘(𝑥𝑥,𝑦𝑦)#

𝑆𝑆enhanced(𝑥𝑥,𝑦𝑦) = round �65535
𝑆𝑆final(𝑥𝑥,𝑦𝑦) − 𝑆𝑆min

𝑆𝑆max − 𝑆𝑆min
�

#
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65535 corresponds to the maximum value in the 

16-bit representation.  

This normalization process serves two crucial 

purposes in the enhancement pipeline: first, it 

maps the processed floating-point values back to 

the standard 16-bit integer format required for 

display, storage, and subsequent analysis; second, 

it preserves the relative contrast relationships 

established during the multiscale fusion. This 

mapping preserves the proportional differences 

between pixel values, ensuring both enhanced 

visibility of details and maintained fidelity of 

image intensity relationships. This preservation is 

crucial for quantitative analysis, where absolute or 

relative intensities have physical significance 

pertaining to material properties, thickness 

variations, or defect characteristics.  

3.6  Gaussian Blurring Induced Detail Destruction 
and Avoidance Strategy 

Traditional multiscale analysis methods employ 

Gaussian convolution for scale-space 

representation, with the convolution operation 

mathematically expressed as 

  (22) 

where Ismooth(x,y,σ) represents the result of the 

smoothed image at scale σ and position (x,y), * 

denotes the convolution operation, and G(i,j,σ) 

denotes the value of the Gaussian kernel at scale σ 

and position (i,j). The Gaussian kernel is defined 

as follows: 

   (23) 

where the term 1/(2πσ
2
) serves as a normalization 

constant. The frequency response of this 

operation reveals its fundamental limitation:  

 
      (24) 

where  denotes the Fourier transform, and 𝐹{⋅}
(u,v) represents the spatial frequency coordinates. 

This exponential decay demonstrates that the 

Gaussian convolution systematically attenuates 

the high-frequency components in the image, with 

the degree of attenuation increasing with both the 

spatial frequency and scale parameter σ.  

While this smoothing behavior is beneficial for 

noise reduction, it fundamentally damages the 

most critical information for industrial DR image 

enhancement: fine details, sharp edges, and 

high-frequency textures that correspond to defect 

signatures and material discontinuities. This 

creates an inherent trade-off in traditional 

approaches—the same operation that reduces 

noise also destroys important details, severely 

limiting the effectiveness for industrial inspection 

applications where preserving fine features is 

essential for reliable defect detection. 

The proposed method addresses this limitation by 

eliminating Gaussian convolution operations and 

employing a three-pronged alternative strategy: 

(1) this comprehensive approach preserves the 

high-frequency components containing critical 

defect signatures while providing robust 

enhancement through complementary processing 

stages; (2) the logarithmic transformation handles 

dynamic range issues without spatial averaging, 

thereby maintaining finer detail integrity than 

Gaussian convolution; and (3) the direct 

multiscale Laplacian methodology extracts the 

information of details across the spatial 

frequencies without the blurring inherent using 

Gaussian operations. The adaptive fusion process 

achieves noise robustness through selective 

enhancement rather than spatial smoothing, 

representing a fundamentally different paradigm 

for handling image quality challenges while 

preserving the essential structural information. 

IV. RESULTS 

4.1   Experimental Setup 

The experimental study employed DR images 

obtained from nondestructive welding quality 

inspections to comprehensively validate the 

proposed method. These DR images were sourced 

from nondestructive testing across three welding 

scenarios and were stored in DICOM format with 

a dynamic range of 0-65535. 

To rigorously assess the efficacy of the proposed 

method, a comparative analysis was performed 

using several DR image detail-enhancement 

techniques. These benchmark methods included a 

method based on histogram equalization (HE) 

 

𝑆𝑆smooth(𝑥𝑥, 𝑦𝑦,𝜎𝜎) = 𝑆𝑆(𝑥𝑥,𝑦𝑦) ∗ 𝐺𝐺(𝑖𝑖, 𝑗𝑗,𝜎𝜎)#

𝐺𝐺(𝑖𝑖, 𝑗𝑗,𝜎𝜎) =
1

2π𝜎𝜎2 e−
𝑖𝑖2+𝑗𝑗2

2𝜎𝜎2 #

ℱ{𝐺𝐺(𝑖𝑖, 𝑗𝑗,𝜎𝜎)} = e−2π2𝜎𝜎2(𝑢𝑢2+𝑣𝑣2)#
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Fig. 2: Experimental platform: (a) hardware and (b) software 

Table 2: A Brief Summary of the 30 DR Images 

Source Resolution Major Defects Average Thickness/mm Total 

Weld in ship plate 2048 x 1800 Linear defects and pores 33 10 

Weld in boiler 1820 x 768 Linear defects and pores 38 10 

Weld in oil pipeline 1280 x 1024 Linear defects and pores 26 10 

 

Three metrics were employed for the quantitative 

assessment of detail-enhancement performance. 

The Peak Signal-to-Noise Ratio (PSNR) functions 

as a statistical metric for evaluating the ratio 

between the maximum possible signal power and 

the power of the corrupting noise, and is 

commonly used for image quality assessment. The 

Structural Similarity Index Measure (SSIM) 

quantifies the perceived structural fidelity 

between a processed image and its original, 

unprocessed counterpart. The Spatial Frequency 

(SF), which indicates the overall activity level in 

an image, is used to measure the change rate of 

intensity across pixels. Elevated SF values are 

associated with sharper edge definitions and 

richer textural details, correlating with superior 

perceptual quality. The computations for PSNR, 

SSIM, and SF are defined by Equations (25), (26), 

and (27), respectively, as follows: 

 

                                 (25) 

                                        (26) 

 

 

[32], a method based on contrast-limited adaptive 

histogram equalization (CLAHE) [33], a method 

based on discrete wavelet transform (DWT) [34], 

and a CNN-based detail enhancement method 

(CNN-DEMD) [35]. It should be specifically noted 

that the dataset employed for training the 

CNN-DEMD benchmark comprised 1202 original 

DR images sourced from nondestructive testing 

results of weld quality. Following data 

augmentation, the dataset used to train the 

CNN-DEMD comprised 3606 samples. 

The experiment utilized 30 DR images of weld 

nondestructive testing sourced from different 

industrial sectors (10 DR images from each 

sector) for comprehensive testing. All DR images 

were acquired using the system shown in Fig. 2. A 

brief summary of the 20 DR images is presented 

in Table 2. 

(a) (b) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑬𝑬,𝑺𝑺) = 10 log10 �
655352

∑ ∑ [𝑬𝑬(𝑥𝑥 ,𝑦𝑦)−𝑺𝑺(𝑥𝑥 ,𝑦𝑦)]2𝑊𝑊
𝑦𝑦=1

𝐻𝐻
𝑥𝑥=1

𝑊𝑊×𝐻𝐻

�#

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆(𝑬𝑬,𝑺𝑺) =
(2𝜇𝜇𝐸𝐸𝜇𝜇𝑃𝑃 + 𝑐𝑐1)(2𝜎𝜎𝐸𝐸𝑃𝑃 + 𝑐𝑐2)

(𝜇𝜇𝐸𝐸2 + 𝜇𝜇𝑃𝑃2 + 𝑐𝑐1)(𝜎𝜎𝐸𝐸2 + 𝜎𝜎𝑃𝑃2 + 𝑐𝑐2) #
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where  is the peak signal-to-noise ratio 𝑃𝑆𝑁𝑅 𝐸, 𝑆( )
of the image  relative to the image ,  𝐸 𝑆 𝑆𝑆𝐼𝑀 𝐸, 𝑆( )
is the structural similarity index measure of the 

image  relative to the image ,  is the 𝐸 𝑆 𝑆𝐹 𝐸( )
spatial frequency of the image ,  computes 𝐸 𝐻

𝐺
𝐸( )

the horizontal gradient of the image ,  𝐸 𝑉𝐺 𝐸( )
computes the vertical gradient of the image ,  𝐸 𝑊
is the image width,  is the image height,  is the 𝐻 µ

𝐸
mean of the image ,  and  are two constants, 𝐸 𝑐

1
𝑐

2
 is the mean of the image ,  is the variance of µ

𝑆
𝑆 σ

𝐸
the image E,  is the variance of the image , and σ

𝑆
𝑆

 is the covariance of the images E and . σ
𝐸𝑆

𝑆

The parameter configuration for the proposed 

method utilized N=4 scales with kernel sizes 

progressively increasing from 3×3 to 9×9, 

enhancement factor λ=5N=20 controlling detail 

enhancement sensitivity, and logarithm base a=10 

compressing the DR image grayscale. This 

parameter set was determined through systematic 

optimization of the experimental dataset to 

achieve a balanced performance across different 

image types and defect characteristics. 

4.2   Objective Analysis 
After applying several distinct methodologies for 

detail enhancement to the DR images obtained 

from three different sources, the processed results 

are presented in Figs. 3–5. It should be noted that 

the red-marked areas in these figures indicate 

defect regions. For reference, although the entire 

experiment comprised 30 images, only 

representative samples from each source are 

displayed here. 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑃𝑃𝑆𝑆(𝑬𝑬) = �𝐻𝐻𝐺𝐺(𝑬𝑬)2 + 𝑉𝑉𝐺𝐺(𝑬𝑬)2

𝐻𝐻𝐺𝐺(𝑬𝑬) = �
1

𝑊𝑊 ×𝐻𝐻��[𝑬𝑬(𝑥𝑥, 𝑦𝑦)− 𝑬𝑬(𝑥𝑥,𝑦𝑦 + 1)]2

𝐻𝐻−1

y=1

𝑊𝑊

𝑥𝑥=1

𝑉𝑉𝐺𝐺(𝑬𝑬) = �
1

𝑊𝑊 × 𝐻𝐻 � �[𝑬𝑬(𝑥𝑥,𝑦𝑦) − 𝑬𝑬(𝑥𝑥 + 1,𝑦𝑦)]2

𝐻𝐻

y=1

𝑊𝑊−1

𝑥𝑥=1

�#

(1) (2)

(3) (4)

 
Fig. 3: Performance of different methods on a ship plate weld image: (1) original, (2) HE, (3) CLAHE, 

(4) DWT, (5) CNN-DEMD, and (6) proposed method 
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Fig. 4: Performance of proposed method against existing methods on a boiler weld image: (1) original, 

(2) HE, (3) CLAHE, (4) DWT, (5) CNN-DEMD, and (6) proposed method 

Fig. 5: Performance of the proposed method against existing algorithms on an oil-pipeline weld image: 

(1) original, (2) HE, (3) CLAHE, (4) DWT, (5) CNN-DEMD, and (6) proposed method 

(1) (2)

(3) (4)

(5) (6)

(1) (2) (3)

(4) (5) (6)

A visual examination of Figs. 2–4 reveals that the 

proposed method achieves superior performance 

compared with other algorithms, exhibiting 

enhanced clarity, sharpness, fidelity, delicacy, and 

artifact reduction compared with other 

algorithms. This method effectively enhances 

images via pixel-level adaptive fusion, leveraging 

logarithmic transformation and a multiscale 

Laplacian transform. 
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4.3   Result Analysis 

Notably, the proposed method achieved superior 

performance, attaining the highest mean PSNR 

across all three industrial weld inspection 

scenarios—ship plates, boilers, and oil 

pipelines—with values of 26.12, 25.17, and 26.96, 

respectively (Table 3). This reflects a statistically 

significant and consistent enhancement over 

existing techniques. 

As illustrated in Table 3, performance escalates 

progressively from conventional approaches such 

as HE and CLAHE (PSNR: 11–15), through 

moderate gains with DWT (~17–20), to a marked 

improvement via CNN-DEMD (23–26). The 

proposed method builds upon this trajectory, 

delivering further gains. 

Moreover, the proposed approach demonstrates 

enhanced statistical robustness, exhibiting the 

lowest standard deviation in PSNR across test 

cases (0.68, 0.74, 0.71), as shown in Table 4. This 

trend of declining variability—from traditional to 

advanced techniques—culminates in the proposed 

method, underscoring its stability and reliability. 

 

Table 3: Average PSNR Across Different Enhancement Methods 

DR Image Source HE CLAHE DWT CNN-DEMD Proposed Method 

Weld in ship plate 13.68 14.29 19.33 24.89 26.12 

Weld in boiler 12.86 14.35 17.87 23.38 25.17 

Weld in oil pipeline 11.53 15.18 20.12 25.57 26.96 

 

Table 4: Standard Deviation of PSNR across different enhancement methods 

DR Image Source HE CLAHE DWT CNN-DEMD Proposed Method 

Weld in ship plate 1.53 1.37 1.15 0.82 0.68 

Weld in boiler 1.68 1.42 1.23 0.87 0.74 

Weld in oil pipeline 1.71 1.29 1.08 0.93 0.71 

 

A comparative analysis of the experimental results 

(Tables 5 and 6) demonstrates the consistent 

superiority of the proposed method in terms of 

structural fidelity and robustness across all test 

scenarios. As indicated in Table 5, the proposed 

technique attained the highest mean Structural 

Similarity Index Measure (SSIM) for welds from 

ship plates (0.75), boilers (0.73), and oil pipelines 

(0.76), reflecting more effective structural 

preservation relative to the benchmark 

approaches. The performance hierarchy remains 

stable: the proposed method surpasses 

CNN-DEMD, which in turn exceeds the Discrete 

Wavelet Transform (DWT) method, whereas 

conventional techniques such as Histogram 

Equalization (HE) and CLAHE yield markedly 

lower SSIM values. 

This performance advantage is complemented by 

enhanced robustness, quantified by the SSIM 

standard deviations in Table 6. For the 

challenging "Weld in ship plate" dataset, the 

proposed method achieved the highest mean 

SSIM and the lowest deviation (0.062), indicating 

superior stability. A comparable trend was 

observed for the boiler welds. Although the 

deviation for oil pipeline welds (0.069) slightly 

exceeded that of the DWT method (0.061), this 

marginal trade-off was substantially offset by a 

significant advantage in the mean SSIM (0.76 vs. 

0.61). Collectively, the high mean SSIM and 

generally low variance underscore the efficacy and 

reliability of the proposed method in delivering 

structurally faithful enhancements across various 

industrial radiography contexts. 
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Table 5: Average SSIM across different enhancement methods 

 

DR Image Source HE CLAHE DWT CNN-DEMD Proposed method 

Weld in ship plate 0.33 0.47 0.68 0.72 0.75 

Weld in boiler 0.42 0.56 0.63 0.68 0.73 

Weld in oil pipeline 0.38 0.49 0.61 0.73 0.76 

 

Table 6: Standard Deviation of SSIM across different enhancement methods 

DR Image Source HE CLAHE DWT CNN-DEMD Proposed method 

Weld in ship plate 0.084 0.081 0.076 0.072 0.062 

Weld in boiler 0.075 0.077 0.069 0.069 0.067 

Weld in oil pipeline 0.073 0.068 0.061 0.064 0.069 

 

As shown in Table 7, the proposed image 

enhancement method consistently achieved the 

highest average Spatial Frequency (SF) across all 

three industrial weld inspection scenarios. For 

welds in ship plates, boilers, and oil pipelines, SF 

values of 18.86, 18.27, and 19.18 were attained, 

respectively, indicating superior image clarity and 

textural enhancement. A clear performance 

hierarchy is observable: conventional techniques 

like HE and CLAHE yield the lowest SF values 

(9.84-13.76), followed by a moderate 

improvement with DWT (14.82-15.26). A 

significant leap is realized by the CNN-DEMD 

method (17.33-18.42), which the proposed 

method subsequently surpasses. 

The superior performance of the proposed 

method is coupled with its exceptional stability. 

The standard deviation data presented in Table 8 

consistently demonstrate the lowest or nearly 

lowest variance in the SF output. With standard 

deviations of 0.24, 0.21, and 0.23 for the 

respective test cases, the method exhibited 

remarkable robustness. This trend of decreasing 

standard deviation from traditional to advanced 

methods culminates in the proposed algorithm, 

confirming its reliability in minimizing 

performance fluctuations while maximizing 

spatial frequency. 

 

Table 7: Average SF across different enhancement methods 

DR Image Source HE CLAHE DWT CNN-DEMD Proposed method 

Weld in ship plate 10.15 12.15 15.14 18.19 18.86 

Weld in boiler 9.84 11.83 15.26 17.33 18.27 

Weld in oil pipeline 11.33 13.76 14.82 18.42 19.18 

 

Table 8: Standard Deviation of SF across different enhancement methods 

DR Image Source HE CLAHE DWT CNN-DEMD Proposed method 

Weld in ship plate 0.53 0.43 0.33 0.23 0.24 

Weld in boiler 0.55 0.41 0.31 0.26 0.21 

Weld in oil pipeline 0.52 0.44 0.32 0.22 0.23 
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As quantified in Table 9, the proposed method 

yields substantial PSNR enhancements across all 

benchmarked image-enhancement techniques in 

three welding inspection scenarios. Two principal 

findings emerged: first, traditional methods, 

notably HE and CLAHE, exhibited the most 

marked relative gains, with PSNR increases 

exceeding 75% and, in one case, surpassing 130%, 

underscoring a pronounced performance gap 

relative to the proposed technique. Second, and 

more significantly, the method demonstrates 

universal applicability, consistently refining even 

advanced approaches, such as CNN-DEMD. The 

modest yet consistent gains (approximately 

4–8%) observed here are paradoxically indicative 

of CNN-DEMD’s strong baseline performance, 

thereby highlighting the proposed method’s 

efficacy as a robust post-processing or integration 

module. In summary, the results systematically 

affirm the method’s capacity to markedly augment 

conventional algorithms while delivering 

measurable improvements to the state-of-the-art 

deep learning models. 

 

Table 9: The proposed method's enhancement of the PSNR for other methods 

Compared Method  Weld in Ship Plate /%  Weld in Boiler /% Weld in Oil Pipeline /% 

HE 90.94 95.72 133.82 

CLAHE 82.79 75.40 77.60 

DWT 35.13 40.85 34.00 

CNN-DEMD 4.94 7.66 5.44 

 

As evidenced by the SSIM enhancement metrics 

in Table 10, the proposed method consistently 

improves the structural similarity across a 

spectrum of benchmark techniques, following a 

distinct and interpretable trend. The most 

pronounced gains were observed with traditional 

algorithms: HE achieved a remarkable 127.27% 

improvement in "Weld in ship plate" and 

100.00% in "Weld in oil pipeline," culminating in 

a total improvement of 100.36%, whereas CLAHE 

exhibited a 48.34% total gain. These results 

indicate a strong compensatory effect on the 

structural distortions inherent to conventional 

approaches. 

In contrast, enhancements for advanced methods, 

such as DWT and CNN-DEMD, although 

consistent, were more moderate (16.92% and 

5.21%, respectively). This inverse correlation 

between methodological sophistication and 

improvement magnitude underscores the 

proposed method’s capacity to deliver substantial 

benefits for weaker algorithms while still 

providing statistically meaningful refinements to 

the state-of-the-art techniques. 

In summary, the consistent positive 

improvements validate the robustness and 

general applicability of the proposed method as a 

universal enhancer of structural fidelity in 

welding inspection imagery. 

 

 

Table 10: The proposed method's enhancement of the SSIM for other methods 

Compared Method  Weld in Ship Plate /%  Weld in Boiler /% Weld in Oil Pipeline /% 

HE 127.27 73.81 100.00 

CLAHE 59.57 30.36 55.10 

DWT 10.29 15.87 24.59 

CNN-DEMD 4.17 7.35 4.11 
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As demonstrated in Table 11, the proposed 

method significantly enhanced the performance of 

various techniques across multiple welding 

inspection scenarios. Notably, the most 

substantial improvement was observed for the HE 

method, with a total improvement of 80.26%, 

reflecting considerable gains in weld detection 

accuracy for ship plates (85.81%), boilers 

(85.67%), and oil pipelines (69.29%). 

Conversely, CLAHE exhibited moderate 

enhancement, achieving a 49.69% overall 

improvement, although its absolute performance 

remained lower, particularly in oil pipeline 

contexts (39.39%). The DWT-based method 

showed more limited gains, with a total 

improvement of 24.57%, whereas CNN-DEMD 

demonstrated the least improvement (4.41%), 

indicating its inherent robustness and lower 

susceptibility to further enhancement under the 

proposed framework. 

These results collectively underscore the 

versatility and efficacy of the proposed method in 

augmenting both traditional and advanced 

techniques, with the degree of improvement being 

inversely related to the baseline sophistication of 

each compared method. 

Table 11: The proposed method's enhancement of the SF for other methods 

Compared Method  Weld in Ship Plate /%  Weld in Boiler /% Weld in Oil Pipeline /% 

HE 85.81 85.67 69.29 

CLAHE 55.23 54.44 39.39 

DWT 24.57 19.72 29.42 

CNN-DEMD 3.68 5.42 4.13 

 

V.    DISCUSSION 

A Gaussian-free multiscale detail-enhancement 

framework is proposed for industrial DR images 

that fundamentally addresses the inherent 

limitation of detail destruction in conventional 

approaches using Gaussian convolution. The core 

innovation lies in the integration of logarithmic 

transformation with direct multiscale Laplacian 

analysis, the development of adaptive importance 

coefficients using hyperbolic tangent functions, a 

systematic methodology for generating Laplacian 

kernels, and achieving multiscale pixel-level 

adaptive fusion. Collectively, these elements 

establish a rigorous and mathematically coherent 

framework for detail-preserving DR-image-detail 

enhancement. 

The experimental results demonstrate the efficacy 

and general applicability of our method. The 

proposed framework universally enhances the 

established techniques—HE, CLAHE, DWT, and 

CNN-DEMD—across diverse industrial weld 

inspection scenarios (ship plate, boiler, and oil 

pipeline). Most strikingly, it elevates the PSNR of 

HE by 133.82% for the oil pipeline welds. 

Substantial gains were also observed in the SSIM 

(HE improved by 127.27% for ship plate welds) 

and SF (HE enhanced by 85.81% for the same 

application). Although the performance uplift 

over more sophisticated methods, such as 

CNN-DEMD, is more modest (e.g., 4.94–7.66% 

for PSNR), the consistent positive enhancement 

across all benchmarks underscores its robustness 

as a superior preprocessing or integrated solution 

for nondestructive testing. 

The significant results achieved through 

experimental validation include demonstrated 

superiority in micron-scale defect detection, 

robust performance across diverse industrial 

applications and image characteristics, and 

practical implementation feasibility for real-time 

inspection systems. The method's ability to 

enhance detail visibility while preserving 

structural integrity addresses a critical need in 

industrial nondestructive testing, where reliable 

defect detection must be balanced with 

maintaining an accurate structural representation 

for subsequent analysis and decision-making. 
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This study had several limitations that warrant 

consideration. First, the proposed framework was 

developed and validated specifically on DR images 

of weld defects; its efficacy on DR images from 

other industrial sources (e.g., castings or 

composite materials) remains unverified. Second, 

despite its performance gains, the computational 

complexity of the multiscale analysis requires 

further optimization for real-time deployment in 

resource-constrained environments. Finally, the 

experimental validation, while demonstrating 

robust results, was conducted on a limited 

dataset, and large-scale comprehensive testing is 

required to fully ascertain its generalizability. 

Future research should prioritize three principal 

avenues of investigation. First, efforts should be 

directed toward broadening the scope of 

application of the method to encompass a wider 

array of industrial nondestructive testing (NDT) 

scenarios, with a rigorous assessment of its 

cross-domain robustness. Concurrently, dedicated 

efforts will be channeled into algorithmic 

refinement and implementation optimization to 

improve the computational efficiency. 

Furthermore, a more comprehensive evaluation 

using large-scale, multi-source datasets will be 

undertaken to thoroughly validate the 

performance of the proposed method. This may 

be supplemented by the development of adaptive 

parameter strategies and their integration with 

deep learning models to augment feature learning 

capabilities. 

VI.​ CONCLUSION 

To address the limitations inherent in existing 

detail-enhancement techniques for industrial DR 

images, this study introduces a novel 

Gaussian-free detail-enhancement framework by 

integrating logarithmic transformation and 

multiscale Laplacian analysis. This method 

fundamentally departs from traditional 

Gaussian-based approaches by eliminating the 

blur-inducing convolution operations. This study 

establishes a new detail-enhancement paradigm 

for industrial DR images through a multiscale, 

pixel-level adaptive fusion mechanism that 

directly and faithfully preserves critical image 

details. 

The superior performance and generalizability of 

the framework were demonstrated through 

rigorous quantitative evaluations. It achieves 

unprecedented enhancement across diverse weld 

inspection scenarios, elevating the PSNR of a 

basic HE method by 133.82% for oil 

pipeline-welds. Substantial gains in the SSIM (up 

to 127.27%) and SF (up to 85.81%) further 

confirmed its efficacy. Critically, it delivers 

consistent, albeit more modest, improvements 

over sophisticated benchmarks such as CLAHE, 

DWT, and CNN-DEMD, underscoring its 

robustness as a premier preprocessing or 

integrated solution for nondestructive testing. 

This study makes three pivotal contributions: (1) 

it provides a highly effective technical foundation 

with significant potential to transform quality 

assurance in manufacturing; (2) it inaugurates a 

Gaussian-free paradigm that prioritizes structural 

fidelity, which is a critical requirement for 

high-precision industrial applications; and (3) it 

provides an adaptive pixel-level fusion technology 

with precise control mechanisms for defect- 

specific enhancements. 
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