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ABSTRACT

In today's society, the demand for clean energy is

essential. Traditionally, renewable sources such

as hydropower, wind, and solar have provided

sustainable solutions. Photovoltaic (PV) systems

generate electricity from sunlight using

semiconductor PV cells, which have been effective

for over 30 years. The efficiency of PV cells

depends on irradiance (solar photon intensity)

and temperature. Higher irradiance boosts

efficiency, while higher temperatures reduce it.

Despite their low voltage outputs, PV systems

can be optimized with DC-DC Ultra Lift Luo

converters to meet load requirements, improving

system efficiency. The Ultra Lift Luo converter, a

type of DC-DC converter, offers a higher voltage

conversion gain than conventional boost

converters. This converter belongs to the Luo

converter family, which uses advanced

techniques to achieve high voltage gain and

efficiency. Solar irradiance fluctuates throughout

the day, impacting PV cell output. Maximum

Power Point Trackers (MPPTs) adjust the

system's operating point to sustain peak

efficiency. This study aims to design AI

controllers for MPPT management. In addition,

we evaluate the performance of Artificial Neural

Networks (ANN) and Recurrent Neural

Networks (RNN) with three datasets to

determine the most efficient AI controller for

optimizing solar energy systems.

Keywords: artificial neural network, dc-dc ultra lift
luo converter, maximum power point tracking,

photovoltaic system, recurrent neural network.
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I. INTRODUCTION

Historically, energy production mainly involved

burning fossil fuels like coal, oil, and natural gas.

This process converted their chemical energy into

heat, which was then used to generate electricity

through various methods. Unfortunately, relying

on fossil fuels has significantly increased harmful

greenhouse gas emissions, particularly carbon

dioxide, over the past 70 years, worsening global

climate change. To reduce these environmental

impacts, there is a growing movement towards

cleaner and more efficient energy conversion

methods, especially photovoltaic (PV) systems

[1-2].

PV systems convert sunlight directly into

electricity using PV cells. However, the voltage

output from PV cells is usually low, requiring

DC-DC converters to boost the voltage levels. The

DC-DC Ultra Lift Luo converter is crucial in this

context. This converter not only increases the

voltage output but also matches the impedance

between the PV system and its connected load,

addressing a key challenge in optimizing PV

system efficiency [3].

Solar irradiance, which measures the intensity of

sunlight photons, varies throughout the day. At

the same time, ambient temperature changes

based on environmental conditions, affecting the

PV system's performance. To maximize energy

capture and efficiency, a Maximum Power Point

Tracker (MPPT) is used. The MPPT adjusts the PV

system's operating point in real-time to ensure it

operates at its maximum power point (MPP),

where the output power is optimized. This

adjustment is critical as it aligns with the varying
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maximum voltage curve of the PV cells

throughout the day. The MPPT signal guides the

DC-DC Ultra Lift Luo converter, which uses

components like Insulated Gate Bipolar

Transistor (IGBT) diodes to control its duty cycle.

By modulating the duty cycle, the converter

adjusts the output voltage to match the load

requirements effectively [4].

Given the non-linear and dynamic nature of solar

irradiance (G) and temperature (T), traditional

time-domain controllers may not efficiently

manage these variations. Therefore, artificial

intelligence (AI) controllers offer a more effective

solution. This study considers two AI controller

methods: Artificial Neural Networks (ANN) and

Recurrent Neural Networks (RNN). These AI

controllers excel in handling non-linear changes

in input values from PV cells, optimizing control

efficiency, and enhancing overall system

performance [5-7].

The shift from fossil fuel-based energy generation

to renewable sources like PV systems represents a

significant step towards sustainability. By

integrating advanced technologies such as

MPPTs, DC-DC converters, and AI controllers, we

can effectively harness solar energy while

maximizing efficiency and minimizing

environmental impact.

This paper is structures as: Section II: PV System

Description and Modeling

● Detailed description of the modeled

213.15-Watt PV array.

● Explanation of the basic block model of PV

arrays.

● Discussion on the construction and operation

of solar cells based on p-n semiconductor

junctions.

● Inputs (G and T) and outputs (voltage output

and power output) of the PV array model.

● Methods used for simulating and

characterizing the PV system under different

conditions.

● DC – DC Ultra Lift Luo Converter Design and

Model.

Section III: Methodology of ANN Controller

● Introduction to artificial intelligence (AI)

controllers.

● Description of Artificial Neural Network

(ANN) model used.

● Explanation of how this AI ANN controller is

implemented for optimizing the PV system,

particularly focusing on its ability to handle

non-linear and dynamic inputs (G and T).

Section IV: Methodology of RNN Controller

● Introduction to artificial intelligence (AI)

controllers.

● Description of Recurrent Neural Network

(RNN) model used.

● Explanation of how this AI RNN controller is

implemented for optimizing the PV system,

particularly focusing on its ability to handle

non-linear and dynamic inputs (G and T).

Section V: Results and Discussion

● Presentation of the results obtained from the

ANN and RNN controllers.

● Comparative analysis of the performance of

ANN and RNN in optimizing the PV systems.

● Discussion on the strengths and weaknesses of

each AI controller method.

● Interpretation of the results in relation to the

efficiency and effectiveness of PV system

optimization.

Section V: Conclusion

● Summary of the key findings from the

study.

● Contributions to the field of renewable

energy and PV system optimization.

● Recommendations for future research

directions.

● Closing remarks on the potential impact of

using AI controllers in enhancing PV

system performance.

II. SYSTEM DESCRIPTION AND MODELING

We present a comprehensive description of the PV

system model, detailing its components and the

integration of ANN and RNN controllers. Block

diagrams are included to illustrate the proposed

models. The PV array model receives inputs of

Solar Irradiance (G) and Temperature (T) and has

two outputs for the ANN controller: Output
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Voltage and Output Power, and one output for the



RNN controller: Output Voltage. A DC-DC Ultra

Lift Luo Converter is employed, with the MPPT

playing a crucial role in maximizing power output

by adjusting the operating point. The reference

voltage (Vpv) is generated based on calculations

and predictions from ANN or RNN algorithms.

The PV system is directly connected to a fixed

load. The block diagrams in Fig. 1 and Fig. 2

visually clarify the system’s architecture and

control flow [8-10].

Fig. 1: Block diagram for the proposed designed

ANNmodel

Fig. 2: Block diagram for the proposed designed

RNNmodel

2.1 Mathematical Solar Array Modeling

The single-diode model is commonly used for

simulating photovoltaic (PV) cells. This model

includes the following components:

1. Photo-current source (Iph): Represents the

current generated by the solar cell when

exposed to sunlight.

2. Diode (D): Models the p-n junction of the

solar cell, providing a path for the

recombination of charge carriers.

3. Series Resistance (Rs): Represents the

resistive losses within the cell.

4. Shunt Resistance (Rsh): Represents leakage

currents within the cell.

The equivalent circuit of a PV cell using the

single-diode model can be represented as:

I = Iph−ID−Ish​ (1)

Where:

● I is the output current of the PV cell.

● Iph is the photo-generated current.

● ID ​is the current through the diode.
● Ish​is the shunt leakage current.

In this research, we concentrate on the design and

modeling of a 213.15-Watt photovoltaic (PV)

array, a critical component for solar energy

systems. The PV array is made up of

interconnected solar cells that convert sunlight

directly into electricity. The main inputs for the

array are solar irradiance (G) and temperature

(T). Solar irradiance, which measures the

intensity of sunlight falling on the PV array in

watts per square meter (W/m²), leads to higher

photo-generated current with increased

irradiance. Temperature, measured in degrees

Celsius (°C), represents the surrounding ambient

temperature and impacts the efficiency and

output of the PV cells, with higher temperatures

typically reducing efficiency. The key outputs of

the PV array include the voltage output (V),

representing the electrical voltage produced and

influenced by both irradiance and temperature,

and the power output (P) for the ANN controller,

indicating the total electrical power generated by

the PV array, calculated as the product of the

voltage and current produced by the PV cells

[11-13].

Understanding how the PV array operates across

different levels of solar irradiance and

temperature is essential to gauge its performance

capabilities. Through simulating the PV array

model in diverse environmental scenarios, we can

anticipate its responses and refine its design to

achieve optimal efficiency [14].

This research centers on intricately modeling a

213.15-Watt PV array, highlighting its fabrication

using p-n semiconductor junctions and its

responsiveness to solar irradiance and

temperature changes. The voltage and power

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter
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outputs serve as key indicators of the PV array's

operational efficiency, pivotal for its integration

into renewable energy setups. Precise modeling

facilitates AI-driven predictions and

improvements in the PV array's performance

across diverse environmental settings [15].

2.2 Modeling and Simulation of 213.15W PV Array

The photovoltaic (PV) array used in the designed

PV system was carefully selected from the

MATLAB/Simulink toolbox for simulation

purposes. This selection provides detailed

information about the array's electrical properties

and includes visual aids demonstrating its

performance under different temperature and

irradiance conditions. Fig. 3 displays a graphical

representation of the chosen PV array model from

MATLAB/Simulink, illustrating its response to

varying environmental factors. Additionally, Table

I outlines specific electrical parameters that

characterize the PV array, offering a clear

understanding of its capabilities and performance

metrics under diverse operational scenarios

[16-17].

Fig. 3: Block diagram for the proposed designed

PV Array model

Table I: Electrical Characteristics Of The Pv
Module

Description User-defined

Maximum power 312.15 W

Voltage at Pmax (Vmax) 29.00V

Current at Pmax (Im) 7.35 A

Short Circuit current (Isc) 7.84 A

Open circuit voltage 36.30 V

Temperature coefficient

Ki
0.102 A/°C

The Voltage-Current (V-I) characteristics curve

demonstrates how the voltage and current output

of the PV array relate to each other under

specified conditions, shown in Fig. 4. At a

temperature of 25 °C, this curve indicates that the

current output remains stable until the voltage

approaches a certain threshold (close to the open

circuit voltage), beyond which the current

decreases significantly [18].

Fig. 4: V-I characteristics curves of the PV array at
a specified temperature

The Voltage Power (V-P) characteristics curve

illustrates how the power output of the PV array

changes with varying voltage levels, specifically at

temperatures of 25 °C and 45 °C, as depicted in

Fig. 5. Typically, this curve exhibits a peak that

signifies the maximum power point (MPP), where

the PV array operates most efficiently. Beyond

this point, the power output declines as the

voltage continues to increase [19-20].

Fig. 5: V-P characteristics curves of the PV array at
a specified temperature

The Voltage Current (V-I) characteristics curve,

depicted in Fig. 6, illustrates how the output

current of the PV array changes with varying

voltages under different levels of sunlight

intensity. Higher levels of irradiance generally

result in increased current outputs, while the

overall shape of the curve remains consistent

across varying irradiance levels.

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter
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Fig. 6: V-I characteristics curves of the PV array at
a specified irradiance

The Voltage Power (V-P) characteristics curve for

specified irradiance levels illustrates how the

power output changes with voltage under varying

sunlight intensities. Like the temperature-

dependent V-P curve shown in Fig. 7, the curve

influenced by irradiance also exhibits a peak at

the maximum power point. Higher irradiance

levels lead to higher peak power values,

highlighting the direct relationship between

sunlight intensity and PV array performance in

generating electrical power.

Fig. 7: V-P characteristics curves of the PV array at
a specified irradiance

2.2.1 Collecting Data

A thorough simulation using MATLAB/Simulink

was undertaken to evaluate the performance of

the custom-defined PV array. The objective was to

assess how the PV array responds across different

levels of solar irradiance (G) and temperature (T),

specifically examining its maximum voltage

(Vmax) and maximum power (Pmax) outputs.

The insights gained from these simulations are

essential for gaining a deeper understanding of

the efficiency and operational behavior of the PV

array [21-23].

1) Simulation Parameters

● Solar Irradiance (G): Represents the strength

of sunlight reaching the PV array, typically

quantified in watts per square meter (W/m²).

● Temperature (T): Indicates the surrounding

environmental temperature near the PV array,

measured in degrees Celsius (°C).

1) Simulation Parameters

● Diverse Conditions Covered: The PV array

model underwent simulation across a wide

spectrum of solar irradiances and

temperatures to encompass various

environmental scenarios.

● Utilization of Simulink: MATLAB/Simulink

was employed for conducting simulations,

utilizing the detailed PV array model available

within the software toolbox.

● Data Collection: A total of 104 data points

were generated from these simulations, with

each point corresponding to specific

combinations of solar irradiance (G) and

temperature (T). For each data point, the

maximum voltage (Vmax) and maximum

power (Pmax) values were recorded.

The outcomes from the simulations,

encompassing Vmax and Pmax values across

different conditions, offer significant insights into

how the PV array performs under diverse

environmental scenarios [24-26].

The data gathered through MATLAB/Simulink

simulations provide a comprehensive perspective

on how the PV array functions across various

levels of irradiance and temperature. This

information is essential for refining and

maximizing the efficiency of PV systems in

practical settings. By comprehending how

environmental factors influence PV output, it

becomes possible to make more accurate

projections and improvements for renewable

energy applications [27].

2.3 DC-DC Ultra Lift Luo Converter Model

The DC-DC Ultra Lift Luo converter represents a

sophisticated power electronics component

engineered to effectively convert and control

voltage levels. It is specifically tailored for

applications in photovoltaic (PV) systems, where

there is a requirement to elevate the typically low

and unregulated output voltage to a level that is

suitable for practical use [28].

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter
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2.4 Converter Design and Operation

Voltage Lift Technique:

Arithmetic Progression: In basic voltage boosting

designs, the output voltage incrementally

increases through sequential steps, adhering to a

systematic arithmetic pattern. This method

ensures a gradual and predictable rise in voltage

levels, typically in straightforward voltage

conversion and regulation mechanisms.

Geometric Progression: The Ultra Lift Luo

converter enhances voltage amplification by

utilizing geometric progression. This method

results in greater and more efficient increases in

output voltage, making the process significantly

more effective.

Components and Circuit Design:

The converter employs inductors, capacitors,

diodes, and switches arranged strategically to

achieve precise voltage alteration according to

operational needs. This configuration ensures

efficient transformation of electrical energy,

maintaining stability and reliability throughout

the conversion process, crucial for achieving the

intended voltage output reliably and effectively.

The converter's function is based on switching

processes that regulate how energy is stored and

released in its inductors and capacitors. This

controlled energy management leads to a gradual

increase in output voltage, which follows a

systematic and incremental pattern, akin to an

arithmetic progression [29-31].

2.5 Advantages Over Traditional Converters

Higher Voltage Gain

Traditional converters such as Boost, Cuk, and

SEPIC are often constrained by their limited

ability to increase voltage. In contrast, the Ultra

Lift Luo converter stands out for its capability to

achieve significantly higher voltage spans,

leveraging a geometric progression mechanism

that enhances its efficiency and performance in

voltage transformation applications [32].

Reduced Harmonics:

Excessive harmonics are problematic as they can

interfere with operations and decrease power

system efficiency. The Ultra Lift Luo converter

effectively mitigates harmonics, resulting in a

cleaner and more efficient power output that

enhances overall system performance.

Improved Power Factor:

Conventional converters often struggle with

undesirable high-power factors, which can result

in inefficiencies within the system. In contrast, the

Ultra Luo converter is specifically engineered to

optimize and maintain a more favorable power

factor. This design enhancement ensures that the

converter operates more efficiently, minimizing

energy losses and improving the overall

performance and reliability of the power system.

Higher Efficiency:

The converter enhances efficiency through

effective reduction of current ripples, resulting in

decreased energy losses and improved overall

system performance. By ensuring smoother and

more stable current flow, the converter minimizes

heat generation and switching losses, optimizing

energy usage. This enhanced efficiency not only

conserves energy but also enhances the reliability

and longevity of connected equipment. Reduced

current ripples also contribute to maintaining

high power quality, ensuring consistent and

reliable operation of electrical systems. Overall,

these advancements underscore the converter's

ability to operate more efficiently while meeting

stringent performance standards and enhancing

system reliability.

Higher Voltage Span:

This converter's capability to achieve a broader

voltage range makes it well-suited for applications

needing significant voltage increases, such as

linking photovoltaic systems to external loads.

2.6 Practical Application in PV Systems

Unregulated PV Output:

PV systems typically produce an unregulated

output voltage that can vary with changes in solar

irradiance and temperature. This unregulated

output is often insufficient for directly powering

loads or integrating with the grid.

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter
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Voltage Regulation:

The Ultra Lift Luo converter plays a vital role in

elevating the voltage output of PV systems to a

stable, regulated level, making it adaptable for a

wide range of applications. This controlled voltage

enhancement is essential to ensure the

consistency and reliability of power supplied by

the PV system, meeting the requirements of

different electronic devices and systems. By

maintaining a steady output, the converter

enables efficient utilization of solar-generated

electricity, enhancing overall system performance

and reliability [33].

Connection to External Loads:

Utilizing the Ultra Lift Luo converter optimizes

the PV system's ability to deliver consistent and

reliable power to external loads. This converter

guarantees that the voltage output meets specified

standards, thereby improving the overall

dependability and operational effectiveness of the

PV system [34].

The Ultra Lift Luo converter is designed with the

following key components:

1. Switch

Insulated Gate Bipolar Transistor (IGBT)

functions as a semiconductor switch crucial for

regulating the converter's duty cycle and

operational efficiency.

2. Diodes

Standard diodes (D1, D2) are essential

components within the circuit, facilitating current

flow in one direction while blocking reverse

current to maintain proper operation and prevent

undesired electrical feedback.

3. Energy Storage Components:

Inductors (L1) are utilized to store energy in the

form of a magnetic field, facilitating consistent

current flow and enhancing the stability of the

electrical system. This ensures reliable operation

by minimizing fluctuations and maintaining a

steady flow of power through the circuit.

Capacitors (C1, C2) also store energy but primarily

smooth out voltage fluctuations, ensuring a

consistent power supply. Both capacitors have

identical values (C2 = C1), contributing equally to

the stability and efficiency of the circuit's

operation.

The converter employs the ultra-lift technique to

consistently elevate the output voltage above the

PV array's input voltage. This method

incrementally increases the voltage in a geometric

progression, ensuring that the output remains

positively offset from the input. This design

feature guarantees efficient power transformation,

essential for maximizing the converter's

performance in various applications. It ensures

reliable operation by maintaining a stable and

suitable output voltage, thereby optimizing the

overall efficiency and functionality of the system

[35].

The operational dynamics and behavior of the

Ultra Lift Luo converter are defined by the set of

equations below, which outline its functionality

and how it responds to input parameters:

Transfer Gain (K) represents the ratio of the

output voltage (Vo) to the input voltage (Vin),

elucidating how the converter amplifies the

voltage from the input to the output:

Vin = Vo / K (2)

The connection between the input voltage (Vin),

output voltage (Vo), and transfer gain (K) is

defined by a mathematical equation that outlines

how changes in Vin affect Vo, scaled by the factor

K. This equation provides a quantitative

understanding of how the converter amplifies the

input voltage to produce a desired output voltage,

crucial for determining its operational

characteristics and efficiency in various

applications:

K = Vo / Vin = 1+D / 1-D (3)

The output current (Io) in the circuit can be

determined using Ohm's law, which states that the

current flowing through a conductor between two

points is directly proportional to the voltage

across the two points and inversely proportional

to the resistance between them:

Vo = IoR (4)
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The DC-DC Ultra Lift Luo converter is an

advanced and efficient device designed to elevate

voltages without inverting them. It harnesses

components like IGBTs, diodes, inductors, and

capacitors to achieve substantial voltage increases

while ensuring outputs are free from ripples and

disturbances. The operational equations it

employs are crucial for engineers to effectively

design, optimize, and assess the converter's

functionality in diverse applications, especially

when paired with PV systems. These equations

provide insights into how the converter manages

voltage transformation, ensuring reliable and

efficient power conversion from photovoltaic

sources to meet varying electrical demands

[36-38].

The DC-DC Ultra Lift Luo converter's operational

concept is elucidated by its block diagram,

illustrating its key components and how electrical

energy moves through the system. This schematic

in Fig. 8 offers a comprehensive view of the

converter's architecture, showcasing the interplay

among components that include IGBTs, diodes,

inductors, and capacitors. Understanding these

interactions is essential for grasping how the

converter achieves efficient voltage elevation

without inversion, which is pivotal for its

application in diverse electronic and energy

systems [39].

circuitry responsible for managing the switching

function. Through switch control, it modulates the

IGBT's duty cycle, thereby regulating energy

transfer and directing the switching element to

control the voltage conversion process effectively.

The inductor (L1) plays a critical role in the circuit

dynamics by harnessing and storing energy within

its magnetic field when the switch is turned on.

When the switch deactivates, the inductor releases

this stored energy, which helps in stabilizing the

current flow and enabling efficient voltage

amplification. This cycle of energy storage and

release ensures smooth operation of the circuit,

minimizing fluctuations and optimizing

performance. By managing the flow of electrical

energy, the inductor contributes significantly to

maintaining stability and enhancing the overall

efficiency of the circuit, supporting its function in

various electronic applications [40].

Two capacitors, C1 and C2, of equal value,

function to store and filter energy within the

circuit. They work together to ensure a steady

output voltage, smoothing fluctuations and

minimizing ripple effects, thereby contributing to

a consistent and stable electrical output [41-42].

Diodes:

Diodes D1 and D2 serve the purpose of facilitating

current flow in a single direction while preventing

reverse flow, ensuring efficient energy transfer

and supporting voltage elevation by maintaining a

unidirectional current path.

2.7 Output Rectifier and Filter

The setup includes capacitors and supplementary

diodes designed to guarantee that the output

voltage remains stable, devoid of noticeable

fluctuations, thereby supplying a consistent high

DC voltage to the load.

From equation 3, we computed the output voltage

of the DC source, applying Vpv = 10V to the input

of the DC-DC Ultra Lift Luo converter. Initiating

our block diagram test with a 50% duty cycle, we

observed an output voltage of Vo = 32.87V. This
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Fig. 8: The Designed Block Diagram of a DC-DC

Ultra Lift Luo Converter

The block diagram components and descriptions:

PV Array (Input Voltage Source):

The PV array produces a low and unregulated DC

voltage as it converts solar energy into electrical

power, which serves as the initial DC input voltage

for the converter.

Switch Control:

The component referred to as the Insulated Gate

Bipolar Transistor (IGBT) integrates control

Capacitors (Energy Storage):



result aligns with the findings illustrated in the

simulation design depicted in Fig. 4 [43]. It

confirms the converter's ability to efficiently

increase the voltage from its initial input,

demonstrating its practical functionality in

real-world scenarios. The successful outcome

underscores the converter's capacity to deliver

stable and amplified DC voltage outputs,

validating its suitability for applications requiring

robust voltage elevation with minimal ripple and

high efficiency, as illustrated through

comprehensive testing and analysis.

With the DC source providing an input voltage

(Vpv = 10V) and applying the designated duty

cycle to the DC-DC Ultra Lift Luo converter, we

utilize this data to compute the anticipated output

voltage (Vo = 32.87V). This calculation hinges on

the converter's operational parameters and the

relationship between input voltage, duty cycle,

and resulting output voltage, as outlined in the

converter's specifications and operational

principles.

The transfer gain (K) and the equations previously

outlined offer insights into how the input voltage

relates to the output voltage, elucidating the

conversion mechanism. By leveraging these

equations, one can comprehend the

transformation process from the input to the

output voltage within the operational framework

of the system.

K = Vo / Vin = 1+D / 1-D

K = Vo / Vin = 32.87 / 10 = 3.287

K = 3.287.

Now, set up the equation:

K = 1+D / 1-D

Cross-multiply to solve for D:

3.287 ×(1-D) = 1+D

3.287 -3.287D = 1+D

3.287 -1 = 3.287D+D

2.287 = 4.287D

D = 2.287 / 4.287

D ≈ 0.533.

Verify the Gain (K)

Now substitute D = 0.533 back into the gain

formula to verify:

K = 1+0.533 / 1-0.533

K = 1.533 / 0.467

K ≈ 3.287

The calculated gain K matches our initial

calculation, confirming that K ≈ 3.287.

This computation validates the recorded output

voltage of 32.87V when supplied with a 10V input

and operated at a 50% duty cycle, affirming the

accuracy of the simulation's outcomes.

Fig. 9 depicts the experimental setup and

simulation outcomes using a block diagram. The

results confirm that by employing a 50% duty

cycle, the converter effectively increases the input

voltage of 10V from the DC source to 32.87V as

demonstrated in the Ultra Lift Luo converter's

output [45].

Fig. 9:MATLAB\Simulink of 50% Duty Pulse

Generator

The analysis and evaluation using calculations

and block diagrams are consistent with the

simulation outcomes, confirming the efficacy of

the Ultra Lift Luo converter in elevating the

voltage from a DC source. This converter

efficiently enhances the input voltage, delivering a

stable and elevated output voltage suitable for a

wide range of applications [46].

The Ultra Lift Luo converter stands out for its

efficiency in elevating voltage levels. Fig. 10

illustrates how its output voltage rises swiftly and

consistently, demonstrating superior performance

compared to conventional converters like Cuk or

Boost, which frequently experience overshooting

and extended stabilization phases. Both

theoretical calculations and simulations confirm

the converter's robustness, highlighting its

suitability for integrating photovoltaic systems

with external loads that demand stable, regulated

higher voltages [47-49]. This capability ensures

reliable power supply adaptation, crucial for
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applications requiring consistent energy delivery

without fluctuations, thus enhancing the overall

reliability and efficiency of renewable energy

systems in practical use scenarios.

Fig. 10: Ultra Lift Luo Converter Time VS Voltage
@ 50% Duty Pulse Generator

III. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial Intelligence (AI) controllers are

becoming more prevalent in enhancing the

effectiveness and efficiency of photovoltaic (PV)

systems. One effective method involves

integrating Artificial Neural Networks (ANNs) to

optimize the Maximum Power Point (MPP)

tracking of PV arrays. This AI-driven approach

helps improve overall system performance by

dynamically adjusting to changing environmental

conditions and maximizing energy output from

solar panels [50].

The artificial neural network (ANN) utilized in

this proposed design leverages the

Levenberg-Marquardt algorithm, renowned for its

efficacy and precision in resolving intricate

nonlinear least-squares problems. The ANN

configuration and application within the PV

system are delineated below, elucidating its

operational framework and how it optimizes

system performance:

3.1 ANN Structure and Training

3.1.1 Input Variables

Solar Irradiance (G): Denotes the measure of

solar energy received per unit area at a given

location and time, influencing the photovoltaic

(PV) array's electricity generation capacity.

Temperature (T): Signifies the environmental

heat surrounding the photovoltaic (PV) array,

impacting its operational efficiency and output

performance.

3.1.2 Network Architecture

The Artificial Neural Network (ANN) is structured

with three fundamental layers: an initial input

layer that receives data, a middle-hidden layer

where computations and transformations occur,

and a final output layer that yields the network's

results.

Input Layer: At the outset of the network, this

foundational layer accepts and processes

incoming data elements G and T, representing

solar irradiance and ambient temperature,

respectively.

Hidden Layers: The hidden layers in the neural

network consist of a carefully crafted arrangement

of 10 neurons, designed to capture and

encapsulate the intricate and nonlinear

relationships between input and output data. This

configuration is tailored to effectively model the

complexity inherent in the system, ensuring

robustness in pattern recognition and prediction

tasks. While the number of hidden layers can

vary, the choice of 10 neurons in each layer for

this specific setup underscores the aim to achieve

optimal performance in handling the diverse and

dynamic nature of the input variables. These

hidden layers act as intermediaries, transforming

raw data into meaningful representations that

facilitate accurate decision-making and system

optimization in various applications, including

those demanding nuanced processing of data like

photovoltaic system management.

Output Layer: The final layer of the neural

network functions as the ultimate stage where

predictions for both maximum power (Pmax) and

maximum voltage (Vmax) are computed. It

consolidates and interprets the complex

computations from earlier layers, culminating in

precise forecasts that are essential for fine-tuning

and enhancing the operational efficiency of

photovoltaic systems across a spectrum of

environmental conditions. This layer plays a

critical role in translating the neural network's

analytical capabilities into actionable insights,

enabling effective management and optimization

of photovoltaic system performance [51].
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3.1.3 Training Algorithm

The Levenberg-Marquardt Algorithm is chosen

for its adeptness in managing intricate data

relationships and nonlinearities. Its superiority

lies in rapidity and precision, outperforming

alternative training methods, thus ideal for

applications demanding real-time responsiveness.

Training with this algorithm revolves around

fine-tuning neural network parameters—such as

weights and biases—to minimize the disparity

between forecasted and observed Maximum

Power Point (MPP) values, ensuring optimal

performance in photovoltaic systems [52].

MATLAB/Simulink serves as the platform for

simulating and training the Artificial Neural

Network (ANN). The neural network undergoes

training using a comprehensive dataset

encompassing diverse combinations of solar

irradiance and temperature inputs. This approach

ensures that the network learns effectively and

can generalize its predictions to new, previously

unseen data points. The integration of

MATLAB/Simulink facilitates rigorous testing and

optimization of the ANN's performance, making it

well-suited for enhancing the efficiency and

reliability of photovoltaic systems through

accurate Maximum Power Point Tracking (MPPT)

capabilities.

3.2 Selecting the Artificial Neural Network (ANN)
Structure

In our envisioned setup, we harness the

capabilities of an Artificial Neural Network (ANN)

to oversee and enhance the Maximum Power

Point (MPP) of the photovoltaic (PV) array. This

involves utilizing inputs such as solar irradiance

(G) and ambient temperature (T) to optimize

performance. The ANN's structure and its

seamless integration into the PV system are

delineated as follows:

Input Layer: The input layer of the artificial

neural network (ANN) consists of two neurons

specifically designed to handle key variables:

Solar Irradiance (G) and Temperature (T). These

neurons serve as initial points of entry for

integrating environmental data into the ANN,

facilitating its capability to interpret and forecast

outcomes influenced by fluctuating levels of

sunlight intensity and ambient temperature. By

processing these crucial environmental factors,

the input layer plays a pivotal role in enabling the

ANN to make informed decisions regarding the

optimal operation of systems such as photovoltaic

(PV) arrays. This foundational layer ensures that

the network can effectively adjust and adapt its

predictions in real-time, enhancing its ability to

maximize the efficiency and performance of PV

systems under diverse environmental conditions.

Output Layer: The output layer of the neural

network comprises two neurons dedicated to key

outputs: Voltage (V) and Power (P). These

neurons play a critical role in providing the

ultimate computed values from the neural

network, representing the expected voltage and

power outputs based on the operational

parameters and environmental conditions of the

system. They serve as the final stage in the

network's decision-making process, translating

complex input data, such as irradiance levels and

temperature variations, into actionable voltage

and power predictions essential for optimizing the

performance of the system in photovoltaic (PV)

applications.

Hidden Layer: The hidden layer of a neural

network comprises interconnected neurons that

use weighted connections to link the input and

output layers. The number of neurons in this layer

is pivotal, defining the network's ability to model

complex nonlinear relationships between input

data and desired outputs. More neurons enhance

the network's capacity to learn intricate patterns

and correlations within data. This layer serves as

an intermediary, processing input signals to

generate meaningful output predictions based on

learned patterns and relationships from the

training data. Its role is critical in enabling the

network to effectively interpret data and make

accurate predictions in various applications.

Network Training: The network is trained using

the Levenberg-Marquardt algorithm, renowned

for its effectiveness in handling intricate nonlinear

challenges with precision. To establish the ideal

hidden layer neuron count, a trial-and-error

methodology is employed. This involves

iteratively adjusting the network's structure until
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optimal performance is achieved. The training

dataset encompasses diverse G and T values,

ensuring the ANN can adeptly handle varying

operational scenarios. This methodical approach

guarantees the network's robustness and

reliability in predicting outcomes, leveraging its

ability to discern complex patterns and

relationships inherent in the input data [53].

Weighted connections: During training, the

weighted connections between the input variables

(G and T) and the neurons in the hidden layer are

adjusted to improve the accuracy of predicting

output values (V and P). This adjustment process

is essential for optimizing how the neural network

interprets and integrates the input variables,

thereby enhancing its ability to forecast voltage

and power outputs accurately. This optimization

is particularly critical in applications such as solar

energy optimization, where precise predictions of

voltage and power are vital for maximizing system

efficiency and performance under varying

environmental conditions. Adjusting these

weighted connections ensures that the neural

network can effectively capture and utilize the

relationships between inputs and outputs,

improving overall predictive capability and

reliability in practical deployment scenarios.

Prediction of Outputs: The ANN predicts voltage

(V) and power (P) by processing input data,

optimizing PV system efficiency through

continuous adjustment to the Maximum Power

Point (MPP). This adjustment dictates the duty

cycle for the DC-DC Ultra Lift Luo converter,

regulating the Insulated Gate Bipolar Transistor

(IGBT) switch. This process ensures maximum

renewable energy capture by aligning PV system

voltage with load resistances, thereby enhancing

overall system performance and energy utilization

efficiency.

Influence of Hidden Layers: The efficacy of the

ANN hinges on its architecture, particularly the

layout of hidden layers and neurons.

Experimentation determines the ideal setup for

precision and rapidity. In PV systems, these layers

play a crucial role in maximizing MPPT efficiency.

By meticulously adjusting their configuration

through iterative assessment, accuracy,

responsiveness, and overall system efficiency are

optimized. This method not only bolsters PV

system reliability and performance but also

promotes the integration of renewable energy

solutions in real-world scenarios, marking a

significant step toward advancing sustainable

energy technologies.

In our simulation framework, the ANN is

implemented on MATLAB/Simulink, utilizing the

Levenberg-Marquardt algorithm for training and

validation. The structure of the ANN, depicted in

Fig. 11, includes an input layer for solar irradiance

(G) and ambient temperature (T), a hidden layer

optimized for neuron count, and an output layer

for voltage (V) and power (P). This setup is

designed to optimize Maximum Power Point

Tracking (MPPT) in PV systems, leveraging neural

networks to ensure robust performance across

varying environmental conditions. The

integration of AI through MATLAB/Simulink's

graphical tools facilitates the design, simulation,

and analysis of dynamic systems, effectively

integrating ANN models with MPPT algorithms

and DC-DC converters. Post-training, the ANN

provides forecasts of V and P outputs under

different irradiance and temperature scenarios,

essential for improving the overall efficacy and

efficiency of PV systems in renewable energy

applications.
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Fig. 11: Proposed ANN structure

Incorporating an Artificial Neural Network (ANN)

for Maximum Power Point (MPP) tracking in PV

systems marks a notable advancement in system

efficiency. Through precise forecasting of the MPP

using inputs like irradiance and temperature, the

ANN guarantees optimal PV array operation.

Training the ANN involves iterative adjustments,

supported by the Levenberg-Marquardt

algorithm, which effectively manages the PV

system's nonlinear traits. Utilizing MATLAB/

Simulink facilitates thorough simulation and

testing, verifying dependable performance under

diverse conditions. This approach not only

enhances accuracy in predicting MPP but also

underscores the ANN's capability to streamline

renewable energy utilization, making it suitable

for practical implementation in various solar

energy applications.

To optimize the ANN controller's performance in

tracking the MPP of the PV system, various

random data sample sets (104, 201, and 1001

points) were rigorously compared to determine

the most effective choice for achieving optimal

efficiency in MPP tracking.

3.3 Data Sample Sets

104 Random Data Samples:

The ANN controller was trained using an initial

dataset that encompassed diverse combinations of

irradiance (G) and temperature (T) values,

ensuring comprehensive coverage across a wide

spectrum of operational scenarios.

201 Random Data Samples:

A larger dataset was curated to introduce greater

variability, aiming to enhance the training

accuracy and the ANN's ability to generalize

across different scenarios.

1001 Random Data Samples:

A substantially increased dataset was curated to

encompass a wider range of input variations,

enabling the ANN to discern more complex

correlations between the input parameters (G and

T) and the resultant outputs (V and P). This

approach aimed to enrich the model's ability to

capture nuanced patterns and optimize its

predictive capabilities in solar energy

applications.

After completing the training of the ANN

controller using each of the three datasets, their
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performance was evaluated and compared based

on specific criteria:

Accuracy:

The accuracy and reliability of the ANN controller

in accurately determining the maximum power

point (MPP) by analyzing the provided irradiance

and temperature data inputs. This measurement

gauges how effectively the controller can predict

the optimal operating conditions for maximizing

power output from the photovoltaic system under

varying environmental factors.

Efficiency:

The effectiveness of the PV system's performance

in maximizing energy output using the ANN

controller to track the MPP. This capability

enhances energy harvesting efficiency, leading to

improved overall performance and greater

sustainability in harnessing solar energy

resources.

Generalization:

The ANN controller's capacity to effectively

generalize its predictions to unfamiliar data

points, demonstrating its resilience and versatility

in varying conditions.

The evaluation of the three datasets (104, 201, and

1001 random samples) resulted in accuracy rates

of 91.0380% for 104 samples, 91.1141% for 201

samples, and 92.3221% for 1001 samples. It was

found that the ANN controller trained with 1001

random samples outperformed others, benefiting

from its ability to capture finer patterns and

ensuring superior precision and effectiveness in

maximizing the MPP.

Training the ANN with a broad and varied dataset

markedly improved the PV system's performance.

Among the data sets tested, the ANN trained with

1001 samples proved most effective, ensuring

robust and dependable operation under diverse

conditions and maximizing efficiency in tracking

the MPP.

Upon analysis, the ANN controller trained with

1001 random data samples was integrated into the

PV system to ensure consistent MPP tracking,

optimize power output, and maintain efficiency

across varying environmental conditions.

Utilizing MATLAB/Simulink for simulation and

training offered a solid foundation to develop and

validate the ANN controller, confirming its

efficacy for practical implementation in real-world

scenarios.

VI. RECURRENT NEURAL NETWORK (RNN)

To improve the PV system's efficiency, an RNN

was implemented, leveraging its internal feedback

loops to effectively manage time-varying and

nonlinear data. This capability is crucial for

real-time MPP tracking, enhancing the overall

performance and efficiency of the PV array

compared to traditional methods.

Feedback Mechanism:

Unlike conventional feedforward neural networks,

RNNs utilize feedback loops that enable

information retention across sequential steps.

This cyclic mechanism empowers the network to

preserve context and effectively manage the

dynamic and nonlinear characteristics inherent in

PV system inputs, distinguishing it as a suitable

choice for real-time applications where temporal

dependencies are critical.

Training Algorithm:

The training of the RNN involves the application

of the Mean Squared Error (MSE) algorithm, a

widely adopted method for regression tasks that

aims to minimize the squared differences between

predicted and actual values. MATLAB/Simulink

serves as the platform of choice for implementing

and training the RNN, utilizing its robust features

to manage intricate simulations and AI training

processes effectively.

4.1 RNN Architecture

Input Layer: In the initial stage, the RNN's input

layer is configured to intake two specific variables:

Solar Irradiance (G) and Temperature (T). These

variables are crucial inputs that influence how the

RNN processes data, allowing it to adapt and

optimize its performance based on varying solar

and temperature conditions in real-time

applications.

Hidden Layers: The RNN architecture includes 4

hidden layers, with each layer housing 10
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neurons. These layers are interconnected to

facilitate the network's ability to recognize

patterns over time and comprehend intricate

correlations within the data, accommodating

temporal dynamics and nonlinear interactions

effectively.

Output Layer: The output layer represents the

culmination of the network's computations,

producing a single variable, Voltage (V), which

plays a pivotal role in determining the maximum

power point (MPP) parameters essential for

optimizing photovoltaic system performance. This

voltage output is intricately calculated by the RNN

through its thorough examination of input data,

particularly solar irradiance (G) and temperature

(T). Designed with precision, the network

operates to forecast and fine-tune this crucial

variable, ensuring it aligns optimally with

real-time environmental fluctuations. By doing so,

the RNN-equipped system achieves superior

efficiency in energy harvesting, adeptly adjusting

to diverse environmental conditions to maintain

robust MPP tracking. This capability not only

enhances the overall operational reliability of the

PV system but also underscores its adaptability in

maximizing renewable energy utilization.

Through its sophisticated configuration, the

network effectively contributes to the

advancement of sustainable energy technologies,

leveraging complex algorithms to manage and

optimize energy production from solar sources.

This integrated approach ensures that the PV

system operates at peak efficiency, translating

environmental inputs into precise voltage

adjustments that enhance overall energy output.

In essence, the output layer's function extends

beyond mere voltage generation; it represents a

critical component in the intelligent management

of photovoltaic systems, where accuracy in MPP

tracking is paramount for sustainable and

effective energy utilization. Thus, the RNN's

ability to process and adjust voltage outputs in

response to changing environmental variables

underscores its role as a cornerstone technology

in modern renewable energy applications, paving

the way for more efficient and reliable solar power

solutions.

Accuracy: The Recurrent Neural Network (RNN)

is poised to deliver heightened precision in

forecasting the Maximum Power Point (MPP),

owing to its capacity to adeptly manage non-linear

and time-varying input fluctuations. Photovoltaic

(PV) systems manifest non-linear tendencies due

to intricate interplays among variables such as

solar irradiance (G), temperature (T), and

resultant electrical attributes like voltage and

current. Leveraging recurrent connections, RNNs

excel in capturing these intricate correlations,

enabling them to preserve information across

sequences of inputs and navigate temporal

dependencies effectively. This capability positions

RNNs as robust tools for optimizing PV system

performance by ensuring accurate MPP tracking

under varying environmental conditions, thus

enhancing the reliability and efficacy of solar

energy utilization.

Response Time: Integrating RNNs into PV

systems significantly improves response times

compared to conventional ANN controllers due to

their inherent recurrent architecture. This design

feature allows RNNs to process sequential data

and past information, facilitating rapid

adaptations to changes in solar irradiance and

temperature. By swiftly adjusting parameters to

optimize energy capture efficiency, RNNs enhance

the overall performance and reliability of PV

systems across diverse environmental conditions.

This advancement holds substantial promise for

advancing renewable energy technologies,

ensuring more effective utilization of solar

resources and reinforcing the feasibility of

sustainable energy solutions in real-world

applications.

Efficiency: Efficiency in photovoltaic (PV)

systems is significantly bolstered by the

integration of Recurrent Neural Networks

(RNNs), primarily through their ability to

optimize Maximum Power Point (MPP) tracking

and swiftly adjust to changes in environmental

conditions. This integration results in more

precise energy capture and overall system

efficiency improvements. By enhancing MPP

tracking accuracy, RNNs ensure that PV systems

operate at peak performance levels, thus

maximizing the economic viability of solar energy

while promoting environmental sustainability.

This technological advancement represents a

pivotal stride in advancing solar PV technology's
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capabilities and reliability, underscoring its role in

facilitating greater adoption of renewable energy

sources worldwide.

4.2 Develop and Train the RNN

Fig. 12 illustrates the development process of the

RNN model using MATLAB/Simulink, where

critical components such as feedback loops and

multiple hidden layers are integrated. The

training of the RNN involves utilizing a diverse

dataset encompassing various irradiance and

temperature inputs, aimed at refining the

network's performance through the Mean

Squared Error (MSE) algorithm. This approach

ensures that the RNN can effectively learn and

adapt to the dynamic patterns inherent in solar

irradiance and temperature data, enhancing its

predictive capabilities. The use of MATLAB/

Simulink provides a robust platform for

implementing and fine-tuning the RNN model,

enabling thorough testing and validation to

optimize its functionality for real-world

applications in PV systems.
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Proposed RNN structureFig. 12:
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The implementation of an RNN to track MPP in

PV systems marks a notable stride towards

enhanced efficiency. Unlike conventional ANNs,

the RNN integrates feedback loops in its internal

architecture, enabling better management of the

dynamic and nonlinear characteristics of input

variables such as solar irradiance and

temperature. This capability empowers the RNN

to achieve more accurate and responsive

adjustments, thereby optimizing energy

harvesting and reinforcing its suitability for

evolving environmental conditions in solar energy

applications.

Harnessing the RNN's functionalities through

MSE algorithm training in MATLAB/Simulink

enhances the PV system's ability to accurately

track MPP. This approach ensures peak

performance, effectively maximizing power output

and overall system efficiency across varying and

unpredictable environmental conditions.

To achieve optimal training and performance of

the Recurrent Neural Network (RNN) controller

for Maximum Power Point (MPP) tracking in the

PV system, we conducted a thorough comparison

using various random data sample sizes. The

objective was to identify the sample size that best

enhances efficiency in MPP tracking. The

comparison involved datasets comprising 104,

201, and 1001 random data points to determine

the most effective configuration for achieving

superior MPP tracking accuracy and efficiency.

Data Sample Sets:

● 104 Random Data Samples:

This initial dataset consists of fewer samples,

facilitating rapid training but potentially

restricting the network's capacity to generalize

effectively to unseen data points.

● 201 Random Data Samples:

A moderate-sized dataset strikes a balance,

aiming to enhance the network's performance

beyond what's achievable with a smaller dataset,

while still managing to maintain a reasonable

training time.

● 1001 Random Data Samples:

A substantial dataset covering extensive input

conditions enables the RNN to grasp intricate

patterns and correlations more comprehensively,

potentially resulting in heightened accuracy and

efficiency in its operations.

The RNN controller underwent training using the

Mean Squared Error (MSE) algorithm within

MATLAB/Simulink across all three data sample

sets. During training, adjustments were made to

the network's parameters to minimize errors in

predicting the output voltage (V) based on varying

input values of irradiance (G) and temperature

(T).

● Accuracy:

The accuracy of the RNN controller in forecasting

the Maximum Power Point (MPP) under changing

irradiance and temperature inputs.

● Efficiency:

The effectiveness of the PV system's performance

utilizing the RNN controller to optimize the MPP,

evaluated through the maximum power

generation achieved.

● Generalization:

The RNN controller's capability to effectively

handle novel data points, demonstrating its

resilience and flexibility in adapting to varying

conditions.

The evaluation of three different data sample sizes

(104, 201, and 1001 random samples) indicated

that the RNN controller trained with 1001 random

data samples exhibited the highest performance.

This larger dataset allowed the RNN to capture

more complex patterns, resulting in enhanced

accuracy and efficiency in maximizing the

system's maximum power point (MPP) tracking.

Training the RNN with a wide-ranging and

inclusive dataset markedly improved the PV

system's operational effectiveness. Among the

various training options explored, the RNN

controller trained with 1001 data samples proved

optimal, ensuring superior efficiency and

consistent performance across diverse

environmental scenarios.

Based on these results, the RNN controller trained

with 1001 random data samples was integrated

into the PV system. This implementation

guaranteed consistent MPP tracking, optimal

power generation, and efficient operation across
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V. RESULTS AND DISCUSSION FOR
ARTIFICAL NEURAL NETWOEK VS
RECURRENT NEURAL NETWORK

In Table II, employing a P&O controller achieved

an efficiency of 90.8290%. Introducing an ANN

controller with 104 samples increased efficiency

to 92.7422%, 92.9241% for 201 samples, and

94.8043% for 1001 samples, surpassing the P&O

controller's performance. The significant

improvement from 104 to 1001 samples highlights

the critical role of a larger and diverse dataset in

effectively training the ANN controller.

Integrating ANN controllers, particularly with

extensive sample sizes, markedly enhances PV

system efficiency compared to conventional P&O

controllers. These findings underscore the efficacy

of AI techniques in maximizing power output and

enhancing overall system performance across

diverse environmental conditions. Implementing

an ANN controller for MPP tracking in PV

systems notably improves overall efficiency

compared to traditional P&O methods. The

benefits of larger training datasets are evident in

the ANN's enhanced ability to accurately predict

and track MPP under varying environmental

conditions, ensuring optimal system operation

and energy yield.

Table II: Comparison of all used Ann Controllers

No. Controller Type Efficiency

1 No controller 80.7254%

2 P&O 90.8290%

3
ANN using 104 Random

samples
92.7422%

4
ANN using 201 Random

samples
92.9241%

5
ANN using 1001 Random

samples
94.8043%

Table III illustrates that employing a P&O

controller yielded an efficiency of 90.8290%.

Introducing an RNN controller with 104 data

samples resulted in an increase to 92.5256%,

followed by improvements to 95.8761% and

97.7182% with 201 and 1001 samples,

respectively, outperforming the P&O controller.

This notable enhancement from 104 to 1001

samples underscores the critical role of a larger

and more diverse dataset in effectively training

the RNN controller. Integrating RNN controllers,

particularly with larger sample sizes, significantly

boosts PV system efficiency compared to

conventional P&O controllers. These findings

underscore the efficacy of AI techniques in

maximizing power generation and enhancing

overall system performance under varying

environmental conditions. Implementing an RNN

controller for MPP tracking alongside a DC-DC

Ultra Lift Luo converter in PV systems

substantially improves overall efficiency

compared to traditional P&O methods,

particularly with expanded training datasets.

These outcomes highlight the RNN's superior

capability to precisely predict and maintain MPP

under diverse environmental conditions,

emphasizing the pivotal importance of dataset

size in optimizing performance.

Table III: Comparison of all used Rnn Controllers

No. Controller Type Efficiency

1 No controller 80.7254%

2 P&O 90.8290%

3
ANN using 104 Random

samples
92.5256%

4
ANN using 201 Random

samples
95.8761%

5
ANN using 1001 Random

samples
97.7182%

VI. CONCLUSION

In conclusion, our study successfully

implemented AI-based ANN and RNN controllers

using MATLAB/Simulink to optimize PV system

performance. We compared these controllers

using varied sample sizes and integrated them

with a DC-DC Ultra Lift Luo converter for voltage

boosting and impedance matching. Both ANN and

RNN controllers predicted maximum output

voltage based on nonlinear inputs like irradiance

and temperature. The RNN showed superior

accuracy and efficiency, especially with a

1001-sample set, highlighting its robust MPP

tracking capability. Future research should

varying environmental conditions. MATLAB/

Simulink facilitated robust simulation and

training, validating the RNN controller's efficacy

for practical deployment in real-world scenarios.
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explore larger data sets and diverse AI approaches

to further enhance PV system efficiency and

reliability in real-world applications, advancing

renewable energy technology effectively.
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