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ABSTRACT

In today's society, the demand for clean energy is
essential. Traditionally, renewable sources such
as hydropower, wind, and solar have provided
sustainable solutions. Photovoltaic (PV) systems
generate electricity from sunlight using
semiconductor PV cells, which have been effective
for over 30 years. The efficiency of PV cells
depends on irradiance (solar photon intensity)
and temperature. Higher irradiance boosts
efficiency, while higher temperatures reduce it.
Despite their low voltage outputs, PV systems
can be optimized with DC-DC Ultra Lift Luo
converters to meet load requirements, improving
system efficiency. The Ultra Lift Luo converter, a
type of DC-DC converter, offers a higher voltage
conversion gain than conventional boost
converters. This converter belongs to the Luo
converter family, which uses advanced
techniques to achieve high voltage gain and
efficiency. Solar irradiance fluctuates throughout
the day, impacting PV cell output. Maximum
Power Point Trackers (MPPTs) adjust the
system's operating point to sustain peak
efficiency. This study aims to design Al
controllers for MPPT management. In addition,
we evaluate the performance of Artificial Neural
Networks (ANN) and Recurrent Neural
Networks (RNN) with three datasets to
determine the most efficient AI controller for
optimizing solar energy systems.
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| INTRODUCTION

Historically, energy production mainly involved
burning fossil fuels like coal, oil, and natural gas.
This process converted their chemical energy into
heat, which was then used to generate electricity
through various methods. Unfortunately, relying
on fossil fuels has significantly increased harmful
greenhouse gas emissions, particularly carbon
dioxide, over the past 70 years, worsening global
climate change. To reduce these environmental
impacts, there is a growing movement towards
cleaner and more efficient energy conversion
methods, especially photovoltaic (PV) systems
[1-2].

PV systems convert sunlight directly into
electricity using PV cells. However, the voltage
output from PV cells is usually low, requiring
DC-DC converters to boost the voltage levels. The
DC-DC Ultra Lift Luo converter is crucial in this
context. This converter not only increases the
voltage output but also matches the impedance
between the PV system and its connected load,
addressing a key challenge in optimizing PV
system efficiency [3].

Solar irradiance, which measures the intensity of
sunlight photons, varies throughout the day. At
the same time, ambient temperature changes
based on environmental conditions, affecting the
PV system's performance. To maximize energy
capture and efficiency, a Maximum Power Point
Tracker (MPPT) is used. The MPPT adjusts the PV
system's operating point in real-time to ensure it
operates at its maximum power point (MPP),
where the output power is optimized. This
adjustment is critical as it aligns with the varying
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maximum voltage curve of the PV cells
throughout the day. The MPPT signal guides the
DC-DC Ultra Lift Luo converter, which uses
components like Insulated Gate Bipolar
Transistor (IGBT) diodes to control its duty cycle.
By modulating the duty cycle, the converter
adjusts the output voltage to match the load
requirements effectively [4].

Given the non-linear and dynamic nature of solar
irradiance (G) and temperature (T), traditional
time-domain controllers may not efficiently
manage these variations. Therefore, artificial
intelligence (AI) controllers offer a more effective
solution. This study considers two AI controller
methods: Artificial Neural Networks (ANN) and
Recurrent Neural Networks (RNN). These Al
controllers excel in handling non-linear changes
in input values from PV cells, optimizing control
efficiency, and enhancing overall system
performance [5-7].

The shift from fossil fuel-based energy generation
to renewable sources like PV systems represents a
significant step towards sustainability. By
integrating advanced technologies such as
MPPTs, DC-DC converters, and Al controllers, we
can effectively harness solar energy while
maximizing efficiency and minimizing
environmental impact.

This paper is structures as: Section II: PV System
Description and Modeling

e Detailed description of the modeled
213.15-Watt PV array.

e Explanation of the basic block model of PV
arrays.

e Discussion on the construction and operation
of solar cells based on p-n semiconductor
junctions.

e Inputs (G and T) and outputs (voltage output

and power output) of the PV array model.

e Methods wused for simulating and
characterizing the PV system under different
conditions.

e DC - DC Ultra Lift Luo Converter Design and
Model.

Section III: Methodology of ANN Controller

e Introduction to artificial intelligence (AI)
controllers.

e Description of Artificial Neural Network
(ANN) model used.

e Explanation of how this AT ANN controller is
implemented for optimizing the PV system,
particularly focusing on its ability to handle
non-linear and dynamic inputs (G and T).

Section IV: Methodology of RNN Controller

e Introduction to artificial intelligence (AI)
controllers.

e Description of Recurrent Neural Network
(RNN) model used.

e Explanation of how this AT RNN controller is
implemented for optimizing the PV system,
particularly focusing on its ability to handle
non-linear and dynamic inputs (G and T).

Section V: Results and Discussion

e Presentation of the results obtained from the
ANN and RNN controllers.

e Comparative analysis of the performance of
ANN and RNN in optimizing the PV systems.

e Discussion on the strengths and weaknesses of
each Al controller method.

e Interpretation of the results in relation to the
efficiency and effectiveness of PV system
optimization.

Section V: Conclusion

e Summary of the key findings from the
study.

e Contributions to the field of renewable
energy and PV system optimization.

e Recommendations for future research
directions.

e Closing remarks on the potential impact of
using AI controllers in enhancing PV
system performance.

Il SYSTEM DESCRIPTION AND MODELING

We present a comprehensive description of the PV
system model, detailing its components and the
integration of ANN and RNN controllers. Block
diagrams are included to illustrate the proposed
models. The PV array model receives inputs of
Solar Irradiance (G) and Temperature (T) and has
two outputs for the ANN controller: Output

Voltage and Output Power, and one output for the
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RNN controller: Output Voltage. A DC-DC Ultra
Lift Luo Converter is employed, with the MPPT
playing a crucial role in maximizing power output
by adjusting the operating point. The reference
voltage (Vpv) is generated based on calculations
and predictions from ANN or RNN algorithms.
The PV system is directly connected to a fixed
load. The block diagrams in Fig. 1 and Fig. 2
visually clarify the system’s architecture and
control flow [8-10].

Fig. 1: Block diagram for the proposed designed
ANN model

Fig. 2: Block diagram for the proposed designed
RNN model

2.1 Mathematical Solar Array Modeling

The single-diode model is commonly used for
simulating photovoltaic (PV) cells. This model
includes the following components:

1. Photo-current source (I,): Represents the
current generated by the solar cell when
exposed to sunlight.

2. Diode (D): Models the p-n junction of the
solar cell, providing a path for the
recombination of charge carriers.

3. Series Resistance (R,): Represents
resistive losses within the cell.

the

4. Shunt Resistance (Rg,): Represents leakage
currents within the cell.

The equivalent circuit of a PV cell using the
single-diode model can be represented as:

I=Ih-Ip-Ig (1)
Where:
e Iisthe output current of the PV cell.
e I, is the photo-generated current.
e I, is the current through the diode.
e I is the shunt leakage current.

In this research, we concentrate on the design and
modeling of a 213.15-Watt photovoltaic (PV)
array, a critical component for solar energy
systems. The PV array is made up of
interconnected solar cells that convert sunlight
directly into electricity. The main inputs for the
array are solar irradiance (G) and temperature
(T). Solar irradiance, which measures the
intensity of sunlight falling on the PV array in
watts per square meter (W/m2), leads to higher
photo-generated  current  with  increased
irradiance. Temperature, measured in degrees
Celsius (°C), represents the surrounding ambient
temperature and impacts the efficiency and
output of the PV cells, with higher temperatures
typically reducing efficiency. The key outputs of
the PV array include the voltage output (V),
representing the electrical voltage produced and
influenced by both irradiance and temperature,
and the power output (P) for the ANN controller,
indicating the total electrical power generated by
the PV array, calculated as the product of the
voltage and current produced by the PV cells

[11-13].

Understanding how the PV array operates across
different levels of solar irradiance and
temperature is essential to gauge its performance
capabilities. Through simulating the PV array
model in diverse environmental scenarios, we can
anticipate its responses and refine its design to
achieve optimal efficiency [14].

This research centers on intricately modeling a
213.15-Watt PV array, highlighting its fabrication
using p-n semiconductor junctions and its
responsiveness to solar irradiance and
temperature changes. The voltage and power
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outputs serve as key indicators of the PV array's
operational efficiency, pivotal for its integration
into renewable energy setups. Precise modeling
facilitates Al-driven predictions and
improvements in the PV array's performance
across diverse environmental settings [15].

2.2 Modeling and Simulation of 213.15W PV Array

The photovoltaic (PV) array used in the designed
PV system was carefully selected from the
MATLAB/Simulink  toolbox for simulation
purposes. This selection provides detailed
information about the array's electrical properties
and includes visual aids demonstrating its
performance under different temperature and
irradiance conditions. Fig. 3 displays a graphical
representation of the chosen PV array model from
MATLAB/Simulink, illustrating its response to
varying environmental factors. Additionally, Table
I outlines specific electrical parameters that
characterize the PV array, offering a clear
understanding of its capabilities and performance
metrics under diverse operational scenarios
[16-17].
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Fig. 3: Block diagram for the proposed designed
PV Array model

Table I: Electrical Characteristics Of The Pv
Module

Description User-defined

Maximum power 312.15 W
Voltage at Pmax (Vmax) 29.00V
Current at Pmax (I,,,) 7.35 A
Short Circuit current (I,.) 7.84 A
Open circuit voltage 36.30V

Temperatulrg coefficient 0102 A/°C

The Voltage-Current (V-I) characteristics curve
demonstrates how the voltage and current output
of the PV array relate to each other under
specified conditions, shown in Fig. 4. At a
temperature of 25 °C, this curve indicates that the
current output remains stable until the voltage
approaches a certain threshold (close to the open
circuit voltage), beyond which the current
decreases significantly [18].

Array type; User-defined;
2 series modules; 2 parallel strings
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Fig. 4. V-I characteristics curves of the PV array at
a specified temperature

The Voltage Power (V-P) characteristics curve
illustrates how the power output of the PV array
changes with varying voltage levels, specifically at
temperatures of 25 °C and 45 °C, as depicted in
Fig. 5. Typically, this curve exhibits a peak that
signifies the maximum power point (MPP), where
the PV array operates most efficiently. Beyond
this point, the power output declines as the
voltage continues to increase [19-20].
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Fig. 5: V-P characteristics curves of the PV array at
a specified temperature

The Voltage Current (V-I) characteristics curve,
depicted in Fig. 6, illustrates how the output
current of the PV array changes with varying
voltages under different levels of sunlight
intensity. Higher levels of irradiance generally
result in increased current outputs, while the
overall shape of the curve remains consistent
across varying irradiance levels.

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter

Volume 24 | Issue 5 | Compilation 1.0

© 2024 Great Britain Journals Press



Array type: User-defined;
2 series modules; 2 parallel strings
- o ; bkl il

05 kWi’

Current {A)

01 Kifin®
|

0 10 2 0 40
Voltage (V)

Fig. 6: V-I characteristics curves of the PV array at
a specified irradiance

The Voltage Power (V-P) characteristics curve for
specified irradiance levels illustrates how the
power output changes with voltage under varying
sunlight intensities. Like the temperature-
dependent V-P curve shown in Fig. 7, the curve
influenced by irradiance also exhibits a peak at
the maximum power point. Higher irradiance
levels lead to higher peak power values,
highlighting the direct relationship between
sunlight intensity and PV array performance in
generating electrical power.
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Fig. 7: V-P characteristics curves of the PV array at
a specified irradiance

221 Collecting Data

A thorough simulation using MATLAB/Simulink
was undertaken to evaluate the performance of
the custom-defined PV array. The objective was to
assess how the PV array responds across different
levels of solar irradiance (G) and temperature (T),
specifically examining its maximum voltage
(Vmax) and maximum power (Pmax) outputs.
The insights gained from these simulations are
essential for gaining a deeper understanding of
the efficiency and operational behavior of the PV
array [21-23].

1) Simulation Parameters

e Solar Irradiance (G): Represents the strength
of sunlight reaching the PV array, typically
quantified in watts per square meter (W/m?2).

e Temperature (T): Indicates the surrounding
environmental temperature near the PV array,
measured in degrees Celsius (°C).

1) Simulation Parameters

e Diverse Conditions Covered: The PV array
model underwent simulation across a wide
spectrum  of solar irradiances and
temperatures to  encompass  various
environmental scenarios.

e Utilization of Simulink: MATLAB/Simulink
was employed for conducting simulations,
utilizing the detailed PV array model available
within the software toolbox.

e Data Collection: A total of 104 data points
were generated from these simulations, with
each point corresponding to specific
combinations of solar irradiance (G) and
temperature (T). For each data point, the
maximum voltage (Vmax) and maximum
power (Pmax) values were recorded.

The outcomes from  the simulations,
encompassing Vmax and Pmax values across
different conditions, offer significant insights into
how the PV array performs under diverse
environmental scenarios [24-26].

The data gathered through MATLAB/Simulink
simulations provide a comprehensive perspective
on how the PV array functions across various
levels of irradiance and temperature. This
information is essential for refining and
maximizing the efficiency of PV systems in
practical settings. By comprehending how
environmental factors influence PV output, it
becomes possible to make more accurate
projections and improvements for renewable
energy applications [27].

2.3 DC-DC Ultra Lift Luo Converter Model

The DC-DC Ultra Lift Luo converter represents a
sophisticated power electronics component
engineered to effectively convert and control
voltage levels. It is specifically tailored for
applications in photovoltaic (PV) systems, where
there is a requirement to elevate the typically low
and unregulated output voltage to a level that is
suitable for practical use [28].

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter

© 2024 Great Britain Journals Press

London Journal of Engineering Research

Volume 24 | Issue 5 | Compilation 1.0



London Journal of Engineering Research

2.4 Converter Design and Operation
Voltage Lift Technique:

Arithmetic Progression: In basic voltage boosting
designs, the output voltage incrementally
increases through sequential steps, adhering to a
systematic arithmetic pattern. This method
ensures a gradual and predictable rise in voltage
levels, typically in straightforward voltage
conversion and regulation mechanisms.

Geometric Progression: The Ultra Lift Luo
converter enhances voltage amplification by
utilizing geometric progression. This method
results in greater and more efficient increases in
output voltage, making the process significantly
more effective.

Components and Circuit Design:

The converter employs inductors, capacitors,
diodes, and switches arranged strategically to
achieve precise voltage alteration according to
operational needs. This configuration ensures
efficient transformation of electrical energy,
maintaining stability and reliability throughout
the conversion process, crucial for achieving the
intended voltage output reliably and effectively.

The converter's function is based on switching
processes that regulate how energy is stored and
released in its inductors and capacitors. This
controlled energy management leads to a gradual
increase in output voltage, which follows a
systematic and incremental pattern, akin to an
arithmetic progression [29-31].

25 Advantages Over Traditional Converters
Higher Voltage Gain

Traditional converters such as Boost, Cuk, and
SEPIC are often constrained by their limited
ability to increase voltage. In contrast, the Ultra
Lift Luo converter stands out for its capability to
achieve significantly higher voltage spans,
leveraging a geometric progression mechanism
that enhances its efficiency and performance in
voltage transformation applications [32].

Reduced Harmonics:

Excessive harmonics are problematic as they can
interfere with operations and decrease power

system efficiency. The Ultra Lift Luo converter
effectively mitigates harmonics, resulting in a
cleaner and more efficient power output that
enhances overall system performance.

Improved Power Factor:

Conventional converters often struggle with
undesirable high-power factors, which can result
in inefficiencies within the system. In contrast, the
Ultra Luo converter is specifically engineered to
optimize and maintain a more favorable power
factor. This design enhancement ensures that the
converter operates more efficiently, minimizing
energy losses and improving the overall
performance and reliability of the power system.

Higher Efficiency:

The converter enhances efficiency through
effective reduction of current ripples, resulting in
decreased energy losses and improved overall
system performance. By ensuring smoother and
more stable current flow, the converter minimizes
heat generation and switching losses, optimizing
energy usage. This enhanced efficiency not only
conserves energy but also enhances the reliability
and longevity of connected equipment. Reduced
current ripples also contribute to maintaining
high power quality, ensuring consistent and
reliable operation of electrical systems. Overall,
these advancements underscore the converter's
ability to operate more efficiently while meeting
stringent performance standards and enhancing
system reliability.

Higher Voltage Span:

This converter's capability to achieve a broader
voltage range makes it well-suited for applications
needing significant voltage increases, such as
linking photovoltaic systems to external loads.

2.6 Practical Application in PV Systems
Unregulated PV Output:

PV systems typically produce an unregulated
output voltage that can vary with changes in solar
irradiance and temperature. This unregulated
output is often insufficient for directly powering
loads or integrating with the grid.
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Voltage Regulation:

The Ultra Lift Luo converter plays a vital role in
elevating the voltage output of PV systems to a
stable, regulated level, making it adaptable for a
wide range of applications. This controlled voltage
enhancement is essential to ensure the
consistency and reliability of power supplied by
the PV system, meeting the requirements of
different electronic devices and systems. By
maintaining a steady output, the converter
enables efficient utilization of solar-generated
electricity, enhancing overall system performance
and reliability [33].

Connection to External Loads:

Utilizing the Ultra Lift Luo converter optimizes
the PV system's ability to deliver consistent and
reliable power to external loads. This converter
guarantees that the voltage output meets specified
standards, thereby improving the overall
dependability and operational effectiveness of the
PV system [34].

The Ultra Lift Luo converter is designed with the
following key components:

1. Switch

Insulated Gate Bipolar Transistor (IGBT)
functions as a semiconductor switch crucial for
regulating the converter's duty cycle and
operational efficiency.

2. Diodes

Standard diodes (D1, D2) are essential
components within the circuit, facilitating current
flow in one direction while blocking reverse
current to maintain proper operation and prevent
undesired electrical feedback.

3. Energy Storage Components:

Inductors (L1) are utilized to store energy in the
form of a magnetic field, facilitating consistent
current flow and enhancing the stability of the
electrical system. This ensures reliable operation
by minimizing fluctuations and maintaining a
steady flow of power through the circuit.

Capacitors (C1, C2) also store energy but primarily
smooth out voltage fluctuations, ensuring a
consistent power supply. Both capacitors have
identical values (C2 = C1), contributing equally to

the stability and efficiency of the circuit's
operation.

The converter employs the ultra-lift technique to
consistently elevate the output voltage above the
PV array's input voltage. This method
incrementally increases the voltage in a geometric
progression, ensuring that the output remains
positively offset from the input. This design
feature guarantees efficient power transformation,
essential for maximizing the converter's
performance in various applications. It ensures
reliable operation by maintaining a stable and
suitable output voltage, thereby optimizing the
overall efficiency and functionality of the system

[35].

The operational dynamics and behavior of the
Ultra Lift Luo converter are defined by the set of
equations below, which outline its functionality
and how it responds to input parameters:

Transfer Gain (K) represents the ratio of the
output voltage (Vo) to the input voltage (Vin),
elucidating how the converter amplifies the
voltage from the input to the output:

Vvinzvo/K (2)

The connection between the input voltage (Vin),
output voltage (Vo), and transfer gain (K) is
defined by a mathematical equation that outlines
how changes in Vin affect Vo, scaled by the factor
K. This equation provides a quantitative
understanding of how the converter amplifies the
input voltage to produce a desired output voltage,

crucial for determining its operational
characteristics and efficiency in various
applications:

K=Vo/‘/in=1+D/1_D (3)

The output current (Io) in the circuit can be
determined using Ohm's law, which states that the
current flowing through a conductor between two
points is directly proportional to the voltage
across the two points and inversely proportional
to the resistance between them:

Vo=1,R (4)
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The DC-DC Ultra Lift Luo converter is an
advanced and efficient device designed to elevate
voltages without inverting them. It harnesses
components like IGBTs, diodes, inductors, and
capacitors to achieve substantial voltage increases
while ensuring outputs are free from ripples and
disturbances. The operational equations it
employs are crucial for engineers to effectively
design, optimize, and assess the converter's
functionality in diverse applications, especially
when paired with PV systems. These equations
provide insights into how the converter manages
voltage transformation, ensuring reliable and
efficient power conversion from photovoltaic
sources to meet varying electrical demands
[36-38].

The DC-DC Ultra Lift Luo converter's operational
concept is elucidated by its block diagram,
illustrating its key components and how electrical
energy moves through the system. This schematic
in Fig. 8 offers a comprehensive view of the
converter's architecture, showcasing the interplay
among components that include IGBTs, diodes,
inductors, and capacitors. Understanding these
interactions is essential for grasping how the
converter achieves efficient voltage elevation
without inversion, which is pivotal for its
application in diverse electronic and energy
systems [39].

Magnetic Field
"| storage Element

Switch
Control

Switching
Element

Output
Rectifier

Voltage
Source

v

Fig. 8: The Designed Block Diagram of a DC-DC
Ultra Lift Luo Converter

The block diagram components and descriptions:
PV Array (Input Voltage Source):

The PV array produces a low and unregulated DC
voltage as it converts solar energy into electrical
power, which serves as the initial DC input voltage
for the converter.

Switch Control:

The component referred to as the Insulated Gate
Bipolar Transistor (IGBT) integrates control

circuitry responsible for managing the switching
function. Through switch control, it modulates the
IGBT's duty cycle, thereby regulating energy
transfer and directing the switching element to
control the voltage conversion process effectively.

The inductor (L1) plays a critical role in the circuit
dynamics by harnessing and storing energy within
its magnetic field when the switch is turned on.

When the switch deactivates, the inductor releases
this stored energy, which helps in stabilizing the
current flow and enabling efficient voltage
amplification. This cycle of energy storage and
release ensures smooth operation of the circuit,
minimizing  fluctuations and  optimizing
performance. By managing the flow of electrical
energy, the inductor contributes significantly to
maintaining stability and enhancing the overall
efficiency of the circuit, supporting its function in
various electronic applications [40].

Capacitors (Energy Storage):

Two capacitors, C1 and C2, of equal value,
function to store and filter energy within the
circuit. They work together to ensure a steady
output voltage, smoothing fluctuations and
minimizing ripple effects, thereby contributing to
a consistent and stable electrical output [41-42].

Diodes:

Diodes D1 and D2 serve the purpose of facilitating
current flow in a single direction while preventing
reverse flow, ensuring efficient energy transfer
and supporting voltage elevation by maintaining a
unidirectional current path.

2.7 Output Rectifier and Filter

The setup includes capacitors and supplementary
diodes designed to guarantee that the output
voltage remains stable, devoid of noticeable
fluctuations, thereby supplying a consistent high
DC voltage to the load.

From equation 3, we computed the output voltage
of the DC source, applying Vpv = 10V to the input
of the DC-DC Ultra Lift Luo converter. Initiating
our block diagram test with a 50% duty cycle, we
observed an output voltage of Vo = 32.87V. This
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result aligns with the findings illustrated in the
simulation design depicted in Fig. 4 [43]. It
confirms the converter's ability to efficiently
increase the voltage from its initial input,
demonstrating its practical functionality in
real-world scenarios. The successful outcome
underscores the converter's capacity to deliver
stable and amplified DC voltage outputs,
validating its suitability for applications requiring
robust voltage elevation with minimal ripple and
high  efficiency, as illustrated through
comprehensive testing and analysis.

With the DC source providing an input voltage
(Vpv = 10V) and applying the designated duty
cycle to the DC-DC Ultra Lift Luo converter, we
utilize this data to compute the anticipated output
voltage (Vo = 32.87V). This calculation hinges on
the converter's operational parameters and the
relationship between input voltage, duty cycle,
and resulting output voltage, as outlined in the
converter's  specifications and operational
principles.

The transfer gain (K) and the equations previously
outlined offer insights into how the input voltage
relates to the output voltage, elucidating the
conversion mechanism. By leveraging these
equations, one can comprehend  the
transformation process from the input to the
output voltage within the operational framework
of the system.

K=V,/Vy,=1+D/1-D
K=V,/V,=32.87/10=3.287
K = 3.287.
Now, set up the equation:
K=1+D/1-D
Cross-multiply to solve for D:
3.287 x(1-D) = 1+D
3.287-3.287D = 1+D
3.287 -1 = 3.287D+D
2.287 = 4.287D
D =2.287/ 4.287
D = 0.533.
Verify the Gain (K)

Now substitute D = 0.533 back into the gain
formula to verify:

K =1+0.533/ 1-0.533
K'=1.533/0.467
K = 3.287

The calculated gain K matches our initial
calculation, confirming that K = 3.287.

This computation validates the recorded output
voltage of 32.87V when supplied with a 10V input
and operated at a 50% duty cycle, affirming the
accuracy of the simulation's outcomes.

Fig. 9 depicts the experimental setup and
simulation outcomes using a block diagram. The
results confirm that by employing a 50% duty
cycle, the converter effectively increases the input
voltage of 10V from the DC source to 32.87V as
demonstrated in the Ultra Lift Luo converter's

output [45].
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The analysis and evaluation using calculations
and block diagrams are consistent with the
simulation outcomes, confirming the efficacy of
the Ultra Lift Luo converter in elevating the
voltage from a DC source. This converter
efficiently enhances the input voltage, delivering a
stable and elevated output voltage suitable for a
wide range of applications [46].

The Ultra Lift Luo converter stands out for its
efficiency in elevating voltage levels. Fig. 10
illustrates how its output voltage rises swiftly and
consistently, demonstrating superior performance
compared to conventional converters like Cuk or
Boost, which frequently experience overshooting
and extended stabilization phases. Both
theoretical calculations and simulations confirm
the converter's robustness, highlighting its
suitability for integrating photovoltaic systems
with external loads that demand stable, regulated
higher voltages [47-49]. This capability ensures
reliable power supply adaptation, crucial for
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applications requiring consistent energy delivery
without fluctuations, thus enhancing the overall
reliability and efficiency of renewable energy
systems in practical use scenarios.

- = H ] L

Fig. 10: Ultra Lift Luo Converter Time VS Voltage
@ 50% Duty Pulse Generator

. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial Intelligence (AI) controllers are
becoming more prevalent in enhancing the
effectiveness and efficiency of photovoltaic (PV)
systems. One effective method involves
integrating Artificial Neural Networks (ANNs) to
optimize the Maximum Power Point (MPP)
tracking of PV arrays. This Al-driven approach
helps improve overall system performance by
dynamically adjusting to changing environmental
conditions and maximizing energy output from
solar panels [50].

The artificial neural network (ANN) utilized in
this proposed design leverages the
Levenberg-Marquardt algorithm, renowned for its
efficacy and precision in resolving intricate
nonlinear least-squares problems. The ANN
configuration and application within the PV
system are delineated below, elucidating its
operational framework and how it optimizes
system performance:

3.1 ANN Structure and Training
3.1.1 Input Variables

Solar Irradiance (G): Denotes the measure of
solar energy received per unit area at a given
location and time, influencing the photovoltaic
(PV) array's electricity generation capacity.

Temperature (T): Signifies the environmental
heat surrounding the photovoltaic (PV) array,
impacting its operational efficiency and output
performance.

3.1.2 Network Architecture

The Artificial Neural Network (ANN) is structured
with three fundamental layers: an initial input
layer that receives data, a middle-hidden layer
where computations and transformations occur,
and a final output layer that yields the network's
results.

Input Layer: At the outset of the network, this
foundational layer accepts and processes
incoming data elements G and T, representing
solar irradiance and ambient temperature,
respectively.

Hidden Layers: The hidden layers in the neural
network consist of a carefully crafted arrangement
of 10 neurons, designed to capture and
encapsulate the intricate and nonlinear
relationships between input and output data. This
configuration is tailored to effectively model the
complexity inherent in the system, ensuring
robustness in pattern recognition and prediction
tasks. While the number of hidden layers can
vary, the choice of 10 neurons in each layer for
this specific setup underscores the aim to achieve
optimal performance in handling the diverse and
dynamic nature of the input variables. These
hidden layers act as intermediaries, transforming
raw data into meaningful representations that
facilitate accurate decision-making and system
optimization in various applications, including
those demanding nuanced processing of data like
photovoltaic system management.

Output Layer: The final layer of the neural
network functions as the ultimate stage where
predictions for both maximum power (Pmax) and
maximum voltage (Vmax) are computed. It
consolidates and interprets the complex
computations from earlier layers, culminating in
precise forecasts that are essential for fine-tuning
and enhancing the operational efficiency of
photovoltaic systems across a spectrum of
environmental conditions. This layer plays a
critical role in translating the neural network's
analytical capabilities into actionable insights,
enabling effective management and optimization
of photovoltaic system performance [51].
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3.1.3 Training Algorithm

The Levenberg-Marquardt Algorithm is chosen
for its adeptness in managing intricate data
relationships and nonlinearities. Its superiority
lies in rapidity and precision, outperforming
alternative training methods, thus ideal for
applications demanding real-time responsiveness.
Training with this algorithm revolves around
fine-tuning neural network parameters—such as
weights and biases—to minimize the disparity
between forecasted and observed Maximum
Power Point (MPP) values, ensuring optimal
performance in photovoltaic systems [52].

MATLAB/Simulink serves as the platform for
simulating and training the Artificial Neural
Network (ANN). The neural network undergoes
training wusing a comprehensive dataset
encompassing diverse combinations of solar
irradiance and temperature inputs. This approach
ensures that the network learns effectively and
can generalize its predictions to new, previously
unseen data points. The integration of
MATLAB/Simulink facilitates rigorous testing and
optimization of the ANN's performance, making it
well-suited for enhancing the efficiency and
reliability of photovoltaic systems through
accurate Maximum Power Point Tracking (MPPT)
capabilities.

3.2 Selecting the Artificial Neural Network (ANN)
Structure

In our envisioned setup, we harness the
capabilities of an Artificial Neural Network (ANN)
to oversee and enhance the Maximum Power
Point (MPP) of the photovoltaic (PV) array. This
involves utilizing inputs such as solar irradiance
(G) and ambient temperature (T) to optimize
performance. The ANN's structure and its
seamless integration into the PV system are
delineated as follows:

Input Layer: The input layer of the artificial
neural network (ANN) consists of two neurons
specifically designed to handle key variables:
Solar Irradiance (G) and Temperature (T). These
neurons serve as initial points of entry for
integrating environmental data into the ANN,
facilitating its capability to interpret and forecast

outcomes influenced by fluctuating levels of
sunlight intensity and ambient temperature. By
processing these crucial environmental factors,
the input layer plays a pivotal role in enabling the
ANN to make informed decisions regarding the
optimal operation of systems such as photovoltaic
(PV) arrays. This foundational layer ensures that
the network can effectively adjust and adapt its
predictions in real-time, enhancing its ability to
maximize the efficiency and performance of PV
systems under diverse environmental conditions.

Output Layer: The output layer of the neural
network comprises two neurons dedicated to key
outputs: Voltage (V) and Power (P). These
neurons play a critical role in providing the
ultimate computed values from the neural
network, representing the expected voltage and
power outputs based on the operational
parameters and environmental conditions of the
system. They serve as the final stage in the
network's decision-making process, translating
complex input data, such as irradiance levels and
temperature variations, into actionable voltage
and power predictions essential for optimizing the
performance of the system in photovoltaic (PV)
applications.

Hidden Layer: The hidden layer of a neural
network comprises interconnected neurons that
use weighted connections to link the input and
output layers. The number of neurons in this layer
is pivotal, defining the network's ability to model
complex nonlinear relationships between input
data and desired outputs. More neurons enhance
the network's capacity to learn intricate patterns
and correlations within data. This layer serves as
an intermediary, processing input signals to
generate meaningful output predictions based on
learned patterns and relationships from the
training data. Its role is critical in enabling the
network to effectively interpret data and make
accurate predictions in various applications.

Network Training: The network is trained using
the Levenberg-Marquardt algorithm, renowned
for its effectiveness in handling intricate nonlinear
challenges with precision. To establish the ideal
hidden layer neuron count, a trial-and-error
methodology is employed. This involves
iteratively adjusting the network's structure until
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optimal performance is achieved. The training
dataset encompasses diverse G and T values,
ensuring the ANN can adeptly handle varying
operational scenarios. This methodical approach
guarantees the network's robustness and
reliability in predicting outcomes, leveraging its
ability to discern complex patterns and
relationships inherent in the input data [53].

Weighted connections: During training, the
weighted connections between the input variables
(G and T) and the neurons in the hidden layer are
adjusted to improve the accuracy of predicting
output values (V and P). This adjustment process
is essential for optimizing how the neural network
interprets and integrates the input variables,
thereby enhancing its ability to forecast voltage
and power outputs accurately. This optimization
is particularly critical in applications such as solar
energy optimization, where precise predictions of
voltage and power are vital for maximizing system
efficiency and performance wunder varying
environmental conditions. Adjusting these
weighted connections ensures that the neural
network can effectively capture and utilize the
relationships between inputs and outputs,
improving overall predictive capability and
reliability in practical deployment scenarios.

Prediction of Outputs: The ANN predicts voltage
(V) and power (P) by processing input data,
optimizing PV system efficiency through
continuous adjustment to the Maximum Power
Point (MPP). This adjustment dictates the duty
cycle for the DC-DC Ultra Lift Luo converter,
regulating the Insulated Gate Bipolar Transistor
(IGBT) switch. This process ensures maximum
renewable energy capture by aligning PV system
voltage with load resistances, thereby enhancing
overall system performance and energy utilization
efficiency.

Influence of Hidden Layers: The efficacy of the
ANN hinges on its architecture, particularly the
layout of hidden layers and neurons.
Experimentation determines the ideal setup for
precision and rapidity. In PV systems, these layers
play a crucial role in maximizing MPPT efficiency.
By meticulously adjusting their configuration
through iterative assessment, accuracy,
responsiveness, and overall system efficiency are

optimized. This method not only bolsters PV
system reliability and performance but also
promotes the integration of renewable energy
solutions in real-world scenarios, marking a
significant step toward advancing sustainable
energy technologies.

In our simulation framework, the ANN is
implemented on MATLAB/Simulink, utilizing the
Levenberg-Marquardt algorithm for training and
validation. The structure of the ANN, depicted in
Fig. 11, includes an input layer for solar irradiance
(G) and ambient temperature (T), a hidden layer
optimized for neuron count, and an output layer
for voltage (V) and power (P). This setup is
designed to optimize Maximum Power Point
Tracking (MPPT) in PV systems, leveraging neural
networks to ensure robust performance across
varying environmental conditions. The
integration of AI through MATLAB/Simulink's
graphical tools facilitates the design, simulation,
and analysis of dynamic systems, effectively
integrating ANN models with MPPT algorithms
and DC-DC converters. Post-training, the ANN
provides forecasts of V and P outputs under
different irradiance and temperature scenarios,
essential for improving the overall efficacy and
efficiency of PV systems in renewable energy
applications.
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Fig. 11: Proposed ANN structure

Incorporating an Artificial Neural Network (ANN)
for Maximum Power Point (MPP) tracking in PV
systems marks a notable advancement in system
efficiency. Through precise forecasting of the MPP
using inputs like irradiance and temperature, the

ANN guarantees optimal PV array operation.
Training the ANN involves iterative adjustments,
supported by the  Levenberg-Marquardt
algorithm, which effectively manages the PV
system's nonlinear traits. Utilizing MATLAB/
Simulink facilitates thorough simulation and
testing, verifying dependable performance under
diverse conditions. This approach not only
enhances accuracy in predicting MPP but also
underscores the ANN's capability to streamline
renewable energy utilization, making it suitable
for practical implementation in various solar
energy applications.

To optimize the ANN controller's performance in
tracking the MPP of the PV system, various
random data sample sets (104, 201, and 1001
points) were rigorously compared to determine
the most effective choice for achieving optimal
efficiency in MPP tracking.

3.3 Data Sample Sets
104 Random Data Samples:

The ANN controller was trained using an initial
dataset that encompassed diverse combinations of
irradiance (G) and temperature (T) values,
ensuring comprehensive coverage across a wide
spectrum of operational scenarios.

201 Random Data Samples:

A larger dataset was curated to introduce greater
variability, aiming to enhance the training
accuracy and the ANN's ability to generalize
across different scenarios.

1001 Random Data Samples:

A substantially increased dataset was curated to
encompass a wider range of input variations,
enabling the ANN to discern more complex
correlations between the input parameters (G and
T) and the resultant outputs (V and P). This
approach aimed to enrich the model's ability to
capture nuanced patterns and optimize its
predictive  capabilities in  solar  energy
applications.

After completing the training of the ANN
controller using each of the three datasets, their
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performance was evaluated and compared based
on specific criteria:

Accuracy:

The accuracy and reliability of the ANN controller
in accurately determining the maximum power
point (MPP) by analyzing the provided irradiance
and temperature data inputs. This measurement
gauges how effectively the controller can predict
the optimal operating conditions for maximizing
power output from the photovoltaic system under
varying environmental factors.

Efficiency:

The effectiveness of the PV system's performance
in maximizing energy output using the ANN
controller to track the MPP. This capability
enhances energy harvesting efficiency, leading to

improved overall performance and greater
sustainability in harnessing solar energy
resources.

Generalization:

The ANN controller's capacity to effectively
generalize its predictions to unfamiliar data
points, demonstrating its resilience and versatility
in varying conditions.

The evaluation of the three datasets (104, 201, and
1001 random samples) resulted in accuracy rates
of 91.0380% for 104 samples, 91.1141% for 201
samples, and 92.3221% for 1001 samples. It was
found that the ANN controller trained with 1001
random samples outperformed others, benefiting
from its ability to capture finer patterns and
ensuring superior precision and effectiveness in
maximizing the MPP.

Training the ANN with a broad and varied dataset
markedly improved the PV system's performance.
Among the data sets tested, the ANN trained with
1001 samples proved most effective, ensuring
robust and dependable operation under diverse
conditions and maximizing efficiency in tracking
the MPP.

Upon analysis, the ANN controller trained with
1001 random data samples was integrated into the
PV system to ensure consistent MPP tracking,
optimize power output, and maintain efficiency
across varying environmental conditions.

Utilizing MATLAB/Simulink for simulation and
training offered a solid foundation to develop and
validate the ANN controller, confirming its
efficacy for practical implementation in real-world
scenarios.

VI. RECURRENT NEURAL NETWORK (RNN)

To improve the PV system's efficiency, an RNN
was implemented, leveraging its internal feedback
loops to effectively manage time-varying and
nonlinear data. This capability is crucial for
real-time MPP tracking, enhancing the overall
performance and efficiency of the PV array
compared to traditional methods.

Feedback Mechanism:
Unlike conventional feedforward neural networks,
RNNs utilize feedback loops that enable

information retention across sequential steps.
This cyclic mechanism empowers the network to
preserve context and effectively manage the
dynamic and nonlinear characteristics inherent in
PV system inputs, distinguishing it as a suitable
choice for real-time applications where temporal
dependencies are critical.

Training Algorithm:

The training of the RNN involves the application
of the Mean Squared Error (MSE) algorithm, a
widely adopted method for regression tasks that
aims to minimize the squared differences between
predicted and actual values. MATLAB/Simulink
serves as the platform of choice for implementing
and training the RNN, utilizing its robust features
to manage intricate simulations and Al training
processes effectively.

4.1 RNN Architecture

Input Layer: In the initial stage, the RNN's input
layer is configured to intake two specific variables:
Solar Irradiance (G) and Temperature (T). These
variables are crucial inputs that influence how the
RNN processes data, allowing it to adapt and
optimize its performance based on varying solar
and temperature conditions in real-time
applications.

Hidden Layers: The RNN architecture includes 4
hidden layers, with each layer housing 10
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neurons. These layers are interconnected to
facilitate the network's ability to recognize
patterns over time and comprehend intricate
correlations within the data, accommodating
temporal dynamics and nonlinear interactions
effectively.

Output Layer: The output layer represents the
culmination of the network's computations,
producing a single variable, Voltage (V), which
plays a pivotal role in determining the maximum
power point (MPP) parameters essential for
optimizing photovoltaic system performance. This
voltage output is intricately calculated by the RNN
through its thorough examination of input data,
particularly solar irradiance (G) and temperature
(T). Designed with precision, the network
operates to forecast and fine-tune this crucial
variable, ensuring it aligns optimally with
real-time environmental fluctuations. By doing so,
the RNN-equipped system achieves superior
efficiency in energy harvesting, adeptly adjusting
to diverse environmental conditions to maintain
robust MPP tracking. This capability not only
enhances the overall operational reliability of the
PV system but also underscores its adaptability in
maximizing renewable energy utilization.
Through its sophisticated configuration, the
network  effectively  contributes to  the
advancement of sustainable energy technologies,
leveraging complex algorithms to manage and
optimize energy production from solar sources.
This integrated approach ensures that the PV
system operates at peak efficiency, translating
environmental inputs into precise voltage
adjustments that enhance overall energy output.
In essence, the output layer's function extends
beyond mere voltage generation; it represents a
critical component in the intelligent management
of photovoltaic systems, where accuracy in MPP
tracking is paramount for sustainable and
effective energy utilization. Thus, the RNN's
ability to process and adjust voltage outputs in
response to changing environmental variables
underscores its role as a cornerstone technology
in modern renewable energy applications, paving
the way for more efficient and reliable solar power
solutions.

Accuracy: The Recurrent Neural Network (RNN)
is poised to deliver heightened precision in

forecasting the Maximum Power Point (MPP),
owing to its capacity to adeptly manage non-linear
and time-varying input fluctuations. Photovoltaic
(PV) systems manifest non-linear tendencies due
to intricate interplays among variables such as
solar irradiance (G), temperature (T), and
resultant electrical attributes like voltage and
current. Leveraging recurrent connections, RNNs
excel in capturing these intricate correlations,
enabling them to preserve information across
sequences of inputs and navigate temporal
dependencies effectively. This capability positions
RNNs as robust tools for optimizing PV system
performance by ensuring accurate MPP tracking
under varying environmental conditions, thus
enhancing the reliability and efficacy of solar
energy utilization.

Response Time: Integrating RNNs into PV
systems significantly improves response times
compared to conventional ANN controllers due to
their inherent recurrent architecture. This design
feature allows RNNs to process sequential data
and past information, facilitating rapid
adaptations to changes in solar irradiance and
temperature. By swiftly adjusting parameters to
optimize energy capture efficiency, RNNs enhance
the overall performance and reliability of PV
systems across diverse environmental conditions.
This advancement holds substantial promise for
advancing renewable energy technologies,
ensuring more effective utilization of solar
resources and reinforcing the feasibility of
sustainable energy solutions in real-world
applications.
Efficiency: Efficiency in photovoltaic (PV)
systems is significantly bolstered by the
integration of Recurrent Neural Networks
(RNNs), primarily through their ability to
optimize Maximum Power Point (MPP) tracking
and swiftly adjust to changes in environmental
conditions. This integration results in more
precise energy capture and overall system
efficiency improvements. By enhancing MPP
tracking accuracy, RNNs ensure that PV systems
operate at peak performance levels, thus
maximizing the economic viability of solar energy
while promoting environmental sustainability.
This technological advancement represents a
pivotal stride in advancing solar PV technology's

Optimization of Solar Energy using Artificial Neural Network VS Recurrent Neural Network Controller with Ultra Lift Luo Converter

© 2024 Great Britain Journals Press

London Journal of Engineering Research

Volume 24 | Issue 5 | Compilation 1.0



London Journal of Engineering Research

capabilities and reliability, underscoring its role in
facilitating greater adoption of renewable energy
sources worldwide.

4.2 Develop and Train the RNN

Fig. 12 illustrates the development process of the
RNN model using MATLAB/Simulink, where
critical components such as feedback loops and
multiple hidden layers are integrated. The
training of the RNN involves utilizing a diverse
dataset encompassing various irradiance and
temperature inputs, aimed at refining the
network's performance through the Mean
Squared Error (MSE) algorithm. This approach
ensures that the RNN can effectively learn and
adapt to the dynamic patterns inherent in solar
irradiance and temperature data, enhancing its
predictive capabilities. The use of MATLAB/
Simulink provides a robust platform for
implementing and fine-tuning the RNN model,
enabling thorough testing and validation to
optimize its functionality for real-world
applications in PV systems.
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Fig. 12: Proposed RNN structure
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The implementation of an RNN to track MPP in
PV systems marks a notable stride towards
enhanced efficiency. Unlike conventional ANNSs,
the RNN integrates feedback loops in its internal
architecture, enabling better management of the
dynamic and nonlinear characteristics of input
variables such as solar irradiance and
temperature. This capability empowers the RNN
to achieve more accurate and responsive
adjustments,  thereby  optimizing energy
harvesting and reinforcing its suitability for
evolving environmental conditions in solar energy
applications.

Harnessing the RNN's functionalities through
MSE algorithm training in MATLAB/Simulink
enhances the PV system's ability to accurately
track MPP. This approach ensures peak
performance, effectively maximizing power output
and overall system efficiency across varying and
unpredictable environmental conditions.

To achieve optimal training and performance of
the Recurrent Neural Network (RNN) controller
for Maximum Power Point (MPP) tracking in the
PV system, we conducted a thorough comparison
using various random data sample sizes. The
objective was to identify the sample size that best
enhances efficiency in MPP tracking. The
comparison involved datasets comprising 104,
201, and 1001 random data points to determine
the most effective configuration for achieving
superior MPP tracking accuracy and efficiency.
Data Sample Sets:

e 104 Random Data Samples:

This initial dataset consists of fewer samples,
facilitating rapid training but potentially
restricting the network's capacity to generalize
effectively to unseen data points.

e 201 Random Data Samples:

A moderate-sized dataset strikes a balance,
aiming to enhance the network's performance
beyond what's achievable with a smaller dataset,
while still managing to maintain a reasonable
training time.

e 1001 Random Data Samples:

A substantial dataset covering extensive input
conditions enables the RNN to grasp intricate
patterns and correlations more comprehensively,

potentially resulting in heightened accuracy and
efficiency in its operations.

The RNN controller underwent training using the
Mean Squared Error (MSE) algorithm within
MATLAB/Simulink across all three data sample
sets. During training, adjustments were made to
the network's parameters to minimize errors in
predicting the output voltage (V) based on varying
input values of irradiance (G) and temperature
(D).

e Accuracy:

The accuracy of the RNN controller in forecasting
the Maximum Power Point (MPP) under changing
irradiance and temperature inputs.

e Efficiency:
The effectiveness of the PV system's performance
utilizing the RNN controller to optimize the MPP,

evaluated through the maximum power
generation achieved.

e Generalization:

The RNN controller's capability to effectively
handle novel data points, demonstrating its
resilience and flexibility in adapting to varying
conditions.

The evaluation of three different data sample sizes
(104, 201, and 1001 random samples) indicated
that the RNN controller trained with 1001 random
data samples exhibited the highest performance.
This larger dataset allowed the RNN to capture
more complex patterns, resulting in enhanced
accuracy and efficiency in maximizing the
system's maximum power point (MPP) tracking.

Training the RNN with a wide-ranging and
inclusive dataset markedly improved the PV
system's operational effectiveness. Among the
various training options explored, the RNN
controller trained with 1001 data samples proved
optimal, ensuring superior efficiency and
consistent performance across diverse
environmental scenarios.

Based on these results, the RNN controller trained
with 1001 random data samples was integrated
into the PV system. This implementation
guaranteed consistent MPP tracking, optimal
power generation, and efficient operation across
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varying environmental conditions. MATLAB/
Simulink facilitated robust simulation and
training, validating the RNN controller's efficacy
for practical deployment in real-world scenarios.

V. RESULTS AND DISCUSSION FOR
ARTIFICAL NEURAL NETWOEK VS
RECURRENT NEURAL NETWORK

In Table II, employing a P&O controller achieved
an efficiency of 90.8290%. Introducing an ANN
controller with 104 samples increased efficiency
to 92.7422%, 92.9241% for 201 samples, and
94.8043% for 1001 samples, surpassing the P&O
controller's  performance. The significant
improvement from 104 to 1001 samples highlights
the critical role of a larger and diverse dataset in
effectively  training the ANN controller.
Integrating ANN controllers, particularly with
extensive sample sizes, markedly enhances PV
system efficiency compared to conventional P&O
controllers. These findings underscore the efficacy
of Al techniques in maximizing power output and
enhancing overall system performance across
diverse environmental conditions. Implementing
an ANN controller for MPP tracking in PV
systems notably improves overall efficiency
compared to traditional P&O methods. The
benefits of larger training datasets are evident in
the ANN's enhanced ability to accurately predict
and track MPP under varying environmental
conditions, ensuring optimal system operation
and energy yield.

Table II: Comparison of all used Ann Controllers

No. Controller Type Efficiency
1 No controller 80.7254%
2 P&O 90.8290%

ANN using 104 Random o
3 samples 92.7422%

ANN using 201 Random 2.0941%
4 samples 9292417

ANN using 1001 Random o
° samples 94.8043%

Table III illustrates that employing a P&O
controller yielded an efficiency of 90.8290%.
Introducing an RNN controller with 104 data
samples resulted in an increase to 92.5256%,
followed by improvements to 95.8761% and

97.7182% with 201 and 1001 samples,
respectively, outperforming the P&O controller.
This notable enhancement from 104 to 1001
samples underscores the critical role of a larger
and more diverse dataset in effectively training
the RNN controller. Integrating RNN controllers,
particularly with larger sample sizes, significantly
boosts PV system efficiency compared to
conventional P&O controllers. These findings
underscore the efficacy of AI techniques in
maximizing power generation and enhancing
overall system performance wunder varying
environmental conditions. Implementing an RNN
controller for MPP tracking alongside a DC-DC

Ultra Lift Luo converter in PV systems
substantially = improves overall efficiency
compared to traditional P&O methods,

particularly with expanded training datasets.
These outcomes highlight the RNN's superior
capability to precisely predict and maintain MPP
under diverse environmental conditions,
emphasizing the pivotal importance of dataset
size in optimizing performance.

Table Ill: Comparison of all used Rnn Controllers

No. Controller Type Efficiency
1 No controller 80.7254%
2 P&O 90.8290%
ANN using 104 Random o

3 samples 92:5256%
ANN using 201 Random o

4 samples 95.8761%
ANN using 1001 Random o

5 samples 97.7182%

VI,  CONCLUSION
In  conclusion, our study successfully

implemented Al-based ANN and RNN controllers
using MATLAB/Simulink to optimize PV system
performance. We compared these controllers
using varied sample sizes and integrated them
with a DC-DC Ultra Lift Luo converter for voltage
boosting and impedance matching. Both ANN and
RNN controllers predicted maximum output
voltage based on nonlinear inputs like irradiance
and temperature. The RNN showed superior
accuracy and efficiency, especially with a
1001-sample set, highlighting its robust MPP
tracking capability. Future research should
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explore larger data sets and diverse Al approaches
to further enhance PV system efficiency and
reliability in real-world applications, advancing
renewable energy technology effectively.
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