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ABSTRACT 

Crack detection and severity classification are 

essential tasks in structural health monitoring, 

especially for critical civil infrastructure such as 

roads and bridges. Traditional methods rely 

heavily on manual inspection, which is 

time-consuming, costly, and prone to human 

error. This study introduces a computer vision 

approach using the YOLOv8n model to 

automatically classify concrete surface 

conditions into six categories, ranging from "No 

Crack" to "Very Large Crack." This approach 

addresses the critical gap between binary 

detection and actionable severity interpretation 

in civil engineering inspections. After 

augmenting and preprocessing the dataset, the 

model was trained over 10 epochs and achieved 

high classification accuracy ranging from Top-1: 

97.1% to Top-5: 99.9% on a multi-class dataset of 

over 11,501 annotated images. The model 

displayed strong generalization across all 

categories and fast inference speeds reaching 0.4 

ms per image. These results validate the YOLOv8 

classifier’s capability for fine-grained severity 

classification using a lightweight YOLO variant, 

supporting rapid and accurate infrastructure 

assessment and paving the way for scalable 

deployment on drones and mobile devices in 

real-time field scenarios. 
 

Keywords: deep learning, crack detection, 

YOLOv8n-cls, infrastructure monitoring, concrete 

cracks, image classification, structural health 

monitoring, severity classification, uav inspection, 

real-time assessment.  

Author α σ ρ: Department of math and Computer 

Science Lawrence Technological University Southfield, 

U.S. 

I.​ INTRODUCTION 

By moving beyond detection and into contextual 

classification, this project contributes a scalable, 

interpretable, and safety-focused tool for civil 

infrastructure inspection. As governments and 

engineers seek more proactive methods to assess 

and maintain aging structures, automated crack 

severity classification represents a critical 

advancement in ensuring public safety and 

resource-efficient intervention. 

Concrete cracking is among the most prevalent 

and early detectable indicators of structural 

distress in bridges, pavements, and public 

infrastructure. These visual signs, while common, 

can range in consequence from harmless surface 

blemishes to critical structural failures. According 

to Beckmann et al. [1], cracks left unassessed may 

propagate quickly, leading to severe degradation, 

moisture intrusion, and rebar corrosion. This 

underscores the urgent need for inspection 

systems that not only detect cracks but also 

evaluate their severity in real time. Over the past 

decade, deep learning has significantly advanced 

the automation of crack detection. Semantic 

segmentation models such as U-Net have been 

widely adopted due to their pixel-level precision 

in identifying crack patterns. U-Net’s 

encoder-decoder architecture has proven effective 

in medical and infrastructure imaging, offering 

high-resolution maps that clearly delineate crack 

contours. However, U-Net and similar 

segmentation models often require large datasets 

and intensive training resources. Furthermore, 

their output is typically limited to visual 

localization, with minimal integration of semantic 

interpretation such as severity levels. Meanwhile, 

ResNet-based detectors have been employed for 

crack image classification due to their strong 
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feature extraction capabilities. ResNet's residual 

learning framework enables deeper networks 

without vanishing gradients, allowing accurate 

binary classification between crack and no-crack 

images. However, these models still often fail to 

distinguish nuanced differences in crack width, 

depth, and spread—factors essential for practical 

engineering decisions. To enhance performance, 

some researchers have proposed hybrid 

approaches, combining CNNs with handcrafted 

features, SVM classifiers, or decision-tree logic to 

embed domain knowledge. While these methods 

show improved accuracy in specific scenarios, 

they are often complex to implement, less 

generalizable, and difficult to scale for real-time 

field deployment. While prior research has shown 

the utility of CNNs and segmentation models for 

basic crack detection, these systems typically stop 

at binary classification, offering no contextual 

interpretation of risk. However, in practice, 

engineers must make safety decisions based not 

only on whether damage exists, but on how severe 

and urgent that damage is. Human visual 

inspection, even among trained professionals, can 

vary depending on lighting, image quality, and 

experience. Krisada et al. [2] note that such 

variability becomes especially dangerous when 

distinguishing between moderate surface cracks 

and deeper structural damage.  

This study addresses those limitations by 

implementing a YOLOv8n-cls model that 

classifies cracks across six severity categories, 

aligned with engineering standards. As a 

lightweight and fast architecture originally 

designed for object detection, YOLOv8n offers 

real-time classification capability while 

maintaining high accuracy, even on edge devices. 

By moving beyond detection and into contextual 

classification, this project contributes a scalable, 

interpretable, and safety-focused tool for civil 

infrastructure inspection. As governments and 

engineers seek more proactive methods to assess 

and maintain aging structures, automated crack 

severity classification represents a critical 

advancement in ensuring public safety and 

resource-efficient intervention. 

Concrete cracking is among the most prevalent 

and early detectable indicators of structural 

distress in bridges, pavements, and public 

infrastructure. These visual signs, while common, 

can range in consequence from harmless surface 

blemishes to critical structural failures. According 

to Beckmann et al. [1], cracks left unassessed may 

propagate quickly, leading to severe degradation, 

moisture intrusion, and rebar corrosion. This 

underscores the urgent need for inspection 

systems that not only detect cracks but also 

evaluate their severity in real time. Over the past 

decade, deep learning has significantly advanced 

the automation of crack detection. Semantic 

segmentation models such as U-Net have been 

widely adopted due to their pixel-level precision 

in identifying crack patterns. U-Net’s 

encoder-decoder architecture has proven effective 

in medical and infrastructure imaging, offering 

high-resolution maps that clearly delineate crack 

contours. However, U-Net and similar 

segmentation models often require large datasets 

and intensive training resources. Furthermore, 

their output is typically limited to visual 

localization, with minimal integration of semantic 

interpretation such as severity levels. 

Meanwhile, ResNet-based detectors have been 

employed for crack image classification due to 

their strong feature extraction capabilities. 

ResNet's residual learning framework enables 

deeper networks without vanishing gradients, 

allowing accurate binary classification between 

crack and no-crack images. However, these 

models still often fail to distinguish nuanced 

differences in crack width, depth, and 

spread—factors essential for practical engineering 

decisions. 

To enhance performance, some researchers have 

proposed hybrid approaches, combining CNNs 

with handcrafted features, SVM classifiers, or 

decision-tree logic to embed domain knowledge. 

While these methods show improved accuracy in 

specific scenarios, they are often complex to 

implement, less generalizable, and difficult to 

scale for real-time field deployment. 

While prior research has shown the utility of 

CNNs and segmentation models for basic crack 

detection, these systems typically stop at binary 

classification, offering no contextual 

Deep Learning-based Severity Classification of Concrete Cracks using YOLOv8 for Structural Health Analysis

L
on

d
on

 J
ou

rn
al

 o
f 

E
n

gi
n

ee
ri

n
g 

R
es

ea
rc

h

©2025 Great Britain Journals PressVolume 25 | Issue 3 | Compilation 1.014



 

interpretation of risk. However, in practice, 

engineers must make safety decisions based not 

only on whether damage exists, but on how severe 

and urgent that damage is. Human visual 

inspection, even among trained professionals, can 

vary depending on lighting, image quality, and 

experience. Krisada et al. [2] note that such 

variability becomes especially dangerous when 

distinguishing between moderate surface cracks 

and deeper structural damage. 

This study addresses the limitations of traditional 

crack detection by implementing a YOLOv8n-cls 

model that classifies concrete surface cracks into 

six severity categories. These categories are 

aligned with industry standards such as the 

American Concrete Institute (ACI 224R-01) and 

AASHTO Bridge Inspection guidelines, which 

define crack width thresholds and provide visual 

assessment criteria used in determining 

maintenance urgency and repair methods.  Unlike 

traditional YOLO detectors that localize objects 

using bounding boxes, the YOLOv8n-cls variant is 

tailored for image-level classification, removing 

detection heads to assign a single severity label 

per image. Despite its lightweight design 

originally intended for object detection, 

YOLOv8n-cls maintains real-time performance 

and high accuracy, making it ideal for deployment 

on edge devices. 

By advancing from simple detection to 

context-aware classification, this research offers a 

scalable and interpretable solution for structural 

health monitoring. The model’s severity outputs 

are directly actionable, consistent with 

professional inspection protocols, and suitable for 

integration into existing workflows—such as 

UAV-based data capture, mobile inspection apps, 

and embedded systems—supporting on-site 

decision-making in real time. 

Beyond immediate assessment, this classification 

framework can also feed into predictive 

maintenance systems and life-cycle cost 

estimation models, helping engineers and asset 

managers prioritize interventions and optimize 

resource allocation. In doing so, the proposed 

method contributes to safer, smarter, and more 

proactive infrastructure management. 
 

II.​ LITERATURE REVIEW 

Accurate assessment of concrete cracks is vital for 

maintaining the integrity of civil infrastructure. 

Over the years, research has evolved from 

physics-based simulations to data-driven 

methods, reflecting the growing need for 

automation, speed, and interpretability in 

inspections. Early approaches relied on numerical 

modeling and traditional image processing, but 

these proved limited in real-world conditions. 

This review traces the evolution of automated 

concrete crack analysis by grouping prior research 

into several chronological and thematic 

categories:  
 

2.1   Numerical Modeling of Concrete Behavior 

Numerical simulation has historically played a 

crucial role in understanding the behavior of 

concrete under load. Beckmann et al. (2012) used 

the Discrete Element Method (DEM) to simulate 

concrete fracture and crack evolution, validating 

the results with experimental data [1]. Their 

model captured crack initiation and propagation 

patterns, aiding in structural failure prediction. 

Džolan et al. further explored the role of 

shrinkage in reinforced concrete structures, 

emphasizing the importance of time-dependent 

effects in numerical simulations [3]. While 

accurate, these methods are computationally 

expensive and not scalable for real-time or 

field-based inspections. 
 

2.2   Traditional Computer Vision Techniques 

Before deep learning, crack detection relied on 

classical computer vision methods, such as edge 

detection, morphological operations, and 

thresholding. These techniques struggled with 

noise, lighting changes, and complex textures. 

Wang et al. (2024) used machine vision and 

skeleton analysis to extract features of cracks from 

processed images [8]. Although such methods laid 

the foundation for automation, their limited 

robustness in uncontrolled environments 

necessitated more intelligent solutions. 
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2.3   Deep Learning-Based Crack Detection 

With the success of CNNs, researchers turned to 

deep learning for more robust and scalable crack 

analysis. Park et al. (2020) introduced a system 

combining deep learning with structured light 

scanning to detect and quantify concrete cracks 

with high precision [7]. Chaiyasarn [2] and 

Golding et al. [4] developed integrated 

CNN-based systems capable of identifying and 

mapping cracks across diverse structures. These 

approaches significantly improved accuracy, yet 

most remained focused on binary detection rather 

than severity interpretation. 

2.4   YOLO-Based Advancements  

YOLO models have recently become popular for 

real-time crack detection due to their speed and 

accuracy. Xu et al. (2025) extended YOLOv8-seg 

for crack segmentation and quantification [9]. 

Their model incorporated advanced modules like 

SPPF-MSA and SPDConv, achieving superior 

accuracy and efficient deployment through 

pruning and knowledge distillation. Additionally, 

they introduced a skeletonization pipeline to 

quantify crack geometry with over 90% accuracy. 

Zhu et al. (2024) introduced FD2-YOLO, 

combining spatial and frequency-domain features 

to detect fine cracks in aerial and ground-level 

images, outperforming both YOLO-based and 

transformer-based models [12]. However, both 

studies focused on detection or segmentation—not 

classification—limiting their utility for prioritizing 

repairs. 

Raushan et al. compared YOLOv3–YOLOv10 

across various image conditions, showing 

YOLOv4’s superior precision and robustness 

under complex visual backgrounds [14]. Mohanty 

and Pani (2023) further combined YOLO with 

machine learning for strength prediction in 

mining-affected structures [13]. These works 

confirm YOLO’s adaptability but highlight the lack 

of image-level, multi-class severity classification 

aligned with inspection standards. 

2.5   UAV and Edge Computing Applications 

Yang et al. (2022) and others have emphasized 

the synergy of UAVs and edge computing for 

infrastructure monitoring. UAV-enabled 

inspection allows access to hard-to-reach 

structures, while real-time inference at the edge 

enables immediate assessment [10]. This fusion is 

ideal for emergency response and large-scale 

condition surveys. However, many deployed 

models focus on detection and segmentation 

rather than nuanced severity interpretation. 

2.6   Cross-Domain Innovations 

To demonstrate YOLO’s versatility, researchers 

have applied it beyond civil engineering. Li et al. 

proposed THDet, a compact YOLOv8-based 

model for helmet detection, optimized for speed 

and edge deployment [5]. Liang et al. used an 

ensemble of YOLO variants for butterfly 

classification, enhancing performance on small, 

diverse datasets [6]. While tangential, these 

studies illustrate YOLO’s flexibility for 

lightweight, domain-adapted modeling and 

motivate its application in concrete crack severity 

classification. 

2.7   Identified Research Gaps 

●​ Real-Time Multi-Severity Classification: 

Existing YOLO-based methods focus primarily 

on binary crack detection or pixel-level 

segmentation, with little attention to severity 

gradation essential for civil infrastructure 

triage. 

●​ Deployable Models: Most advanced models 

are too resource-intensive for edge 

deployment. There is a need for lightweight 

classifiers that maintain accuracy without 

sacrificing speed. 

●​ Standards Integration: Few studies align their 

outputs with established civil engineering 

inspection standards, limiting practical use by 

field engineers. 

This study addresses these gaps by using 

YOLOv8n-cls—a classification-specific variant of 

YOLO—trained to categorize cracks into six 

severity levels aligned with ACI 224R-01 and 

AASHTO guidelines. Table 1 presents a 

comparative summary of prior studies and the 

proposed analysis. 
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Table 1: Comparative Summary of Prior Studies and Proposed Work 

Study Method/Model Task Type 
Dataset 

Size/Source 
Output Type 

Performance 

(Top-1/mAP/F1) 
Notes 

Xu et al. 

(2025) 

YOLOv8-seg + 

Pruning 

Segmentation + 

Measurement 

Custom 

(real-world) 

Crack masks + 

geometry 

mAP↑ 6.2%, IoU↑ 

4% 

Instance 

segmentation and 

quantification 

Zhu et al. 

(2024) 
FD2-YOLO Detection 

RDD2022, 

UAV-PDD2023 

Bounding 

boxes 

mAP↑, Recall↑, 

Precision↑ 

Dual-backbone with 

frequency and spatial 

fusion 

Raushan et 

al. (2023) 

YOLOv3–YOLOv

10 
Detection 

3,750 varied 

images 

Bounding 

boxes 

YOLOv4: F1 = 

88.9% 

Tested across 

complex 

backgrounds 

Mohanty & 

Pani (2023) 

YOLO + ML 

prediction 

Detection + 

Strength 

Estimation 

Satellite, LiDAR, 

GPS 

Damage + 

Strength 
MAE, RMSE, RSE↓ 

Predictive 

maintenance in 

mining zones 

Proposed 

Work 

(2025) 

YOLOv8n-cls 
Image 

Classification 

11,501 annotated 

crack images 
Severity class 

Top-1 = 97.1%, 

Top-5 = 99.9% 

Real-time, aligned 

with ACI/AASHTO, 

edge-ready 

 

III.​ METHODOLOGY  

This study proposes a structured pipeline for the 

classification of concrete crack severity using a 

deep learning model based on YOLOv8n-cls. The 

methodology integrates four major phases: (1) 

dataset preparation, (2) model configuration, (3) 

training and validation, and (4) performance 

evaluation. Each phase is aligned with the goal of 

building a scalable, accurate, and deployable crack 

severity classifier. In this research, image 

classification is essential to enabling the AI model 

to accurately detect surface cracks in construction 

materials such as concrete. Each image in the 

dataset is labeled into 5 severity categories and 

the no crack category, forming the foundation of 

the model’s supervised learning process. These 

labels allow the model to learn how to 

differentiate between the severity of structurally 

compromised surfaces as well as those that are 

not based on features appearing in each category. 

The classification task is critical because cracks 

often appear in various forms, from thin hairline 

fractures to wide, deep fissures, and under 

different lighting conditions or surface textures. 

Training the model on a diverse and correctly 

labeled dataset, it learns to recognize subtle 

variations in shape, brightness, and texture, 

indicating cracks. In practice, this model's ability 

to correctly classify these images enables 

automated crack detection and classification 

systems, reducing or replacing the need for 

manual inspections. It also plays a vital role in 

early warning systems for infrastructure 

maintenance, helping engineers prioritize repairs 

and avoid structural failures.  

This study presents a comprehensive deep 

learning framework for the automated detection 

and classification of cracks on structural concrete 

surfaces. The core of this framework is built upon 

the YOLOv8 architecture, specifically the 

YOLOv8n-cls variant, which was meticulously 

selected for its optimal balance of speed, accuracy, 

and computational efficiency. This architecture is 

particularly well-suited for real-time applications 

and resource-constrained environments, such as 

those encountered in Unmanned Aerial Vehicle 

(UAV)-based inspections or mobile-device 

applications. The overall model architecture, as 

illustrated in Figure 2, is a multi-layered system 

designed to process and classify concrete surface 

imagery with high precision. The architectural 

components and their functions are as follows: 

●​ Input Layer: The model accepts input images 

of size 256×256 pixels with three RGB color 

channels. This standardized input size ensures 

consistent processing and computational 

efficiency. 

●​ Data Augmentation Layer: To enhance the 

model's generalization capabilities and 

prevent overfitting, a suite of data 

augmentation techniques is applied to the 

input images. These techniques include 

random shifts in width and height (up to 

±10%), a zoom range of ±10%, and horizontal 
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flipping. The use of nearest neighbor 

interpolation ensures that these 

transformations do not introduce spurious 

artifacts. This process simulates the natural 

variability of real-world imagery and improves 

the model's robustness. 

●​ Backbone: The backbone of the model is the 

CSPDarknet architecture, specifically the 

efficient and compact variant from YOLOv8n. 

This layer is responsible for extracting a 

hierarchical set of features from the input 

images through a series of convolutional 

blocks. The CSP (Cross-Stage Partial) 

structure is optimized for efficient feature 

extraction, reducing computational overhead 

while preserving rich semantic information. 

●​ Neck (PAN + FPN): Following the backbone, a 

combined Path Aggregation Network (PAN) 

and Feature Pyramid Network (FPN) 

architecture forms the model's neck. This 

component is crucial for feature fusion, 

enabling the network to combine high-level 

semantic features from deep layers with 

low-level, high-resolution spatial features 

from early layers. This fusion process 

strengthens the model's semantic 

understanding and significantly enhances its 

ability to localize features, a critical step for 

accurate classification. 

●​ Classification Head: Diverging from 

traditional YOLO architectures that perform 

object detection with bounding box 

regression, this model utilizes a dedicated 

Classification Head. This head is designed to 

predict a single class label for the entire input 

image, rather than detecting and localizing 

objects within it. The model's task is to 

categorize the concrete surface into one of six 

predefined classes: "Hairline," "Small," 

"Moderate," "Large," "Very Large," or "No 

Crack." 

●​ Output Layer: The final output of the model is 

a Softmax vector of size 6, corresponding to 

the number of classification categories. The 

model's prediction is the class with the highest 

probability value in this vector. 

●​ Training Configuration: The base model, a 

lightweight YOLOv8 classifier, was trained for 

10 epochs. The loss function used to guide the 

training process was Cross-entropy, a 

standard choice for multi-class classification 

problems. The model's performance was 

evaluated using a comprehensive suite of 

metrics, including Accuracy, F1-Score, a 

Confusion Matrix, and the Precision-Recall 

Curve, ensuring a thorough assessment of its 

predictive capabilities. 

The selection of YOLOv8n-cls as the core 

architecture was a deliberate choice driven by the 

specific requirements of structural health 

monitoring. This model offers several key 

advantages over alternative architectures: 

●​ Efficiency: Compared to computationally 

intensive models like ResNet or EfficientNet, 

which are designed for high accuracy on 

large-scale datasets at the expense of speed 

and memory, YOLOv8n-cls is a lightweight 

classifier variant. This optimization for 

real-time inference makes it ideal for 

deployment on hardware with limited 

resources, such as embedded systems or 

mobile devices. 

●​ Task-Specific Optimization: Unlike 

segmentation-based approaches that require 

pixel-level annotations and are 

computationally expensive, the classification- 

focused head of YOLOv8n-cls allows for rapid 

categorization of crack severity. This provides 

a direct and efficient solution for automated 

condition assessment without the overhead of 

detailed, pixel-level mapping. 

●​ Scalability: The modular design of the 

YOLOv8 framework facilitates a streamlined 

workflow for training and deployment. This 

enhances the scalability of the proposed 

solution, making it easily adaptable to 

large-scale structural health monitoring 

programs. 

3.1   Dataset 

The “Crack Dataset” on Kaggle, Yatata [11] is a 

collection of labeled images specifically created 

for training machine learning models to detect 

surface cracks. It includes two categories: “Crack” 

and “No Crack,” with each image clearly showing 

damaged or undamaged surfaces like concrete or 

pavement, as shown in Figure 1.  
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a)​ Crack  

 

b)​ No Crack 

Figure 1: Crack Dataset Samples 

The dataset used in this study is designed to train 

the selected models to detect and classify concrete 

cracks under diverse real-world conditions, 

making it suitable for applications in 

infrastructure inspection, construction safety, and 

automated maintenance systems. To ensure the 

model's ability to generalize effectively to unseen 

surfaces, the dataset includes images from varied 

sources and conditions. Each sample consists of a 

raw image along with its corresponding mask. 

Initially, the dataset contained 8,819 images of 

cracked concrete and 1,184 images without visible 

cracks. To balance the dataset for classification 

purposes, a subset of 3,600 crack images was 

selected and combined with the no-crack samples. 

These 3,600 crack images were then categorized 

into six distinct severity classes, including one “no 

crack” category, through a structured expert 

survey. The survey involved 30 

professionals—civil engineers, inspectors, and 

contractors—with 5 to over 20 years of field 

experience in concrete construction and structural 

evaluation. Participants classified the images 

based on visual crack characteristics, primarily 

width, and structural implications, in line with 

widely recognized standards such as the American 

Association of State Highway and Transportation 

Officials (AASHTO) codes. These codes emphasize 

crack severity in the context of inspection, safety, 

and serviceability of reinforced concrete 

structures. 

The severity classification criteria used in the 

labeling process were as follows: 

●​ No Crack: No visible signs of surface damage. 

●​ Hairline Cracks: insignificant cracks that are 

very narrow cracks, often less than 0.012 

inches (0.3 mm) in width, that are generally 

not a cause for immediate concern and may 

not even be considered a defect. 

●​ Small Cracks: Narrow cracks under 0.012 

inches (0.3 mm) in width, concentrated in a 

small area and often densely spaced.  

●​ Moderate Cracks: Cracks ranging from 0.012 

to 0.05 inches (0.3–1.3 mm) in width, 

potentially allowing water ingress and 

indicating the need for further inspection. 

●​ Large Cracks: Cracks 0.05 inches (1.3 mm) or 

wider, possibly reflecting structural issues or 

advanced material degradation or lead to 

accelerated deterioration of the concrete. 

●​ Very Large Cracks: Cracks significantly wider 

than 0.05 inches (1.3 mm), including patterns 

of deep longitudinal and transverse cracking 

that result in isolated sections or "island 

concrete." 

This expert-guided labeling process produced a 

high-confidence ground truth dataset, serving as 

the foundation for evaluating the 

YOLOv8n-cls-based classification model. The 

final class distribution and examples are 

summarized in Table 2. 
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3.2   YOLOv8 Architecture  

This study presents the comprehensive technical 

implementation of a deep learning model 

designed for crack detection in structural concrete 

images. The methodology covers all essential 

stages of the pipeline—from data preprocessing 

and augmentation to the design, training, and 

deployment of the YOLOv8 architecture as shown 

in Figure 2. A step-by-step overview of the 

codebase is provided to demonstrate how raw 

imagery is processed, enhanced, and fed into the 

model to ensure accurate and efficient 

classification. Each phase—such as image 

enhancement, dataset partitioning, and model 

training—has been meticulously structured to 

maximize robustness, accuracy, and 

computational performance. By integrating AI 

and computer vision, this implementation offers a 

practical and scalable solution for real-time 

infrastructure monitoring. In particular, it focuses 

on developing a high-speed, YOLOv8-based 

classification system capable of detecting and 

distinguishing concrete cracks by width and 

severity, thereby supporting automated condition 

assessment in structural engineering applications. 

The model architecture shown in Figure 2 

consist of Input Layer, Data Augmentation Layer, 

Backbone: CSPDarknet (YOLOv8n variant), Neck: 

PAN + FPN, Head: Classification Head, Output 

Layer, and Training Configuration.  

In the input phase, images are processed with 

size: 256×256 RGB that visualize concrete surface 

images. In the Data Augmentation Layer, 

techniques that are used is shifting width and 

height ±10%, zoom range ±10%, horizontal flip, 

nearest neighbor to improve generalization, 

prevent overfitting, and simulate real-world 

variability. The Backbone layer, extracting 

hierarchical image features and compact and 

efficient convolutional blocks optimized for speed 

and accuracy. The Neck layer (PAN + FPN) 

feature fusion across different scales, and 

strengthens semantic understanding and 

enhances spatial localization. The classification 

Head replaces bounding box detection with class 

prediction, and predicts one of 6 class labels 

(Hairline, Small, Moderate, Large, Very Large, No 

Crack). In the Output Layer, a softmax vector of 

size 6 (number of categories) interpreted with 

highest probability is chosen. The  Training 

Configuration base model is a lightweight 

YOLOv8 classifier over 10 epochs, loss function 

using Cross-entropy. It is Evaluated based on 

accuracy, F1-Score, confusion Matrix, 

precision-recall curve YOLOv8n-cls was selected 

as the backbone architecture for this study due to 

Table 2: Crack Categories Samples 

Severity Level Image  Severity Level Image 

Hairline 

 

 Large 

 

Small 

 

 Very Large 

 

Moderate 

 

 No Crack 

 



 

Figure 2: Model Architecture 
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its unique balance between speed, accuracy, and 

computational efficiency, making it particularly 

well-suited for edge deployment scenarios such as 

UAV-based inspections or mobile applications. 

Unlike heavier classification models like ResNet 

or EfficientNet, which offer high accuracy at the 

cost of increased memory and inference time, 

YOLOv8n-cls is a lightweight classifier variant 

optimized for real-time applications with limited 

hardware resources. Compared to segmentation- 

based approaches that require detailed pixel-level 

annotations and longer processing time, the 

classification head in YOLOv8n-cls allows for 

rapid severity categorization without 

compromising overall performance. Additionally, 

the modular YOLOv8 framework facilitates 

streamlined training and deployment, further 

enhancing the scalability of the proposed solution 

in practical structural health monitoring 

workflows. 

 

3.3   Augment Data 

Data augmentation is a fundamental technique in 

deep learning, particularly useful when working 

with image datasets that may be limited in size or 

diversity. In this study, data augmentation is 

applied to artificially expand the training dataset 

by introducing slight variations to the original 

images. These variations include shifting the 

image slightly to the left or right, up or down 

(width and height shifts), zooming in or out, and 

flipping the image horizontally. Such 

transformations help the model become more 

robust by exposing it to a wider range of image 

orientations and compositions, improving its 

ability to generalize to new data. Additionally, 

these techniques help prevent overfitting by 

ensuring the model does not become too narrowly 

tailored to the original training images. All 

augmented images are generated using 

appropriate fill techniques to maintain visual 

integrity at the image borders. As a result, this 

process enhances the overall quality and diversity 

of the dataset, ultimately contributing to more 

accurate and reliable crack detection in structural 

imagery. 

The following list is a description of what each 

type of augmentation does and how much it 

affects the image. These are randomly distributed 

for each image that is processed, so there is a high 

chance for each image an augmentation can occur 

twice. For example, an image may be shifted 20% 

left even with the variable set to 10%. With these 

ranges the augmentation does not remove any 

important information of the image, allowing for 

more noise in what the model will be able to 

identify.  

1. Width and height shift (0.1): Randomly shifts 

images horizontally and vertically by 10%. 

2. Zoom range (0.1): Randomly zooms in or out 

by 10%. 

3. Horizontal flip (True): Flips images 

horizontally to introduce variation. 

4. Fill mode (nearest’): Fills empty spaces 

created by transformations using the nearest 

pixel values. 
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The function augment_class() applies these 

transformations to images in each folder as shown 

in Table 3. It ensures that each class has a 

specified target number of images by calculating 

how many augmentations each original image 

needs. The images are then loaded, converted to 

arrays, and passed to the Image Data 

Generator.flow() function, which generates 

augmented images and saves them to the 

specified directory. This method ensures that the 

dataset remains balanced and diverse, improving 

the model's ability to recognize patterns and 

variations in real-world data. 

 

 

3.4   Class Mapping 

Since YOLOv8 requires class folders to be 

numbered starting from 0, we use a 

class_mapping dictionary to convert our original 

human-classification category folders such as 

Category_1_Hairline, Category_2_Small into 

numeric folder names (0, 1, 2, ...) that YOLOv8 

expects. This mapping allows us to reorganize the 

dataset automatically, ensuring that YOLOv8 can 

correctly associate each image with its class label 

based solely on the folder structure, without 

needing separate label files for classification tasks. 

3.5   Model Training 

In the training segment, we begin by initializing 

the YOLOv8 classification model using the 

pre-trained lightweight base model 

yolov8n-cls.pt. The model is trained on the 

reorganized dataset found under version_1.1/ 

Categories_Augmented, which includes images 

sorted into five severity-based categories. All 

input images are uniformly resized to 256×256 

pixels to match model expectations. Training is 

conducted over 10 epochs, leveraging GPU 

acceleration to optimize performance. 

Following training, the model is evaluated on a 

separate validation dataset to assess its ability to 

generalize to unseen examples. This validation 

phase is essential to verify that the model’s strong 

performance is not due to overfitting on the 

training data. Once complete, we locate the most 

recent training run directory, from which we 

extract the model weights and training logs for 

further analysis. These outputs enable 

downstream visualization and deployment, 

ensuring traceability and reproducibility of model 

behavior. 

3.6 Confusion Matrix 

The confusion matrix, illustrated in Figure 3, 

serves as a key diagnostic tool for evaluating the 

performance of a classification model. It presents 

a comprehensive comparison between predicted 

and actual labels, offering insight into the model’s 

ability to correctly distinguish between classes. 

Table 3: Data Augmentation Original vs. Augmented Image Samples 

Augmentation Type Original Image Augmented Image 

Shift Up 20% 

Shift Left 10% 

a)  b)  

Flip 

Shift Left 20% 

Shift Down 10% 

c)  d)  

Flip 

Shift Left 20% 

Shift Down 10% 

e)  f)  



 

Figure 3: Confusion Matrix on Flatten Validation Dataset 
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The matrix includes four core components: 

● True Positives (TP): Cases where the model 

correctly identifies a positive instance. 

● False Positives (FP): Instances where the 

model incorrectly classifies a negative case as 

positive. 

● True Negatives (TN): Cases where the model 

correctly identifies a negative instance. 

● False Negatives (FN): Instances where the 

model fails to detect a positive case, predicting 

it as negative. 

By analyzing the distribution of these values, one 

can assess not only overall accuracy but also 

precision, recall, and the balance of class-specific 

predictions. To achieve this in the model we must 

first flatten the validation images into one folder 

for our model to predict. 

 

3.7 Accuracy 

Monitoring accuracy over training epochs is a 

critical part of evaluating and refining deep 

learning models. It helps researchers understand 

how well a model is learning over time, detect 

potential overfitting or underfitting, and make 

informed decisions about early stopping, learning 

rate schedules, or architecture changes. For 

multi-class classification problems like crack 

severity analysis, these plots provide insight into 

the model’s convergence behavior and consistency 

across iterations. 

Figure 4 shows the Top 1 and Top 5 accuracy of 

the YOLOv8n-cls model across 10 training epochs. 

The Top 1 accuracy curve begins at approximately 

90.1% in the first epoch and steadily climbs, 

reaching about 95.7% by the final epoch. This 

gradual increase with minor fluctuations, such as 

a dip around epoch 4 followed by a strong 

recovery demonstrates a healthy learning curve. 

Importantly, the model continues improving 

beyond the midpoint, suggesting that additional 

epochs could lead to even better results without 

immediate signs of overfitting. 

Meanwhile, the Top 5 accuracy remains 

remarkably stable, hovering just below 100% 

throughout the training process. This almost 

perfect Top 5 performance indicates that the 

correct label consistently ranks among the 

model’s top predictions, even in the early stages of 

training. Such a pattern is particularly valuable in 

real-world applications where multiple severity 

levels might appear visually similar, and model 

confidence can be leveraged to inform inspection 

priorities. 

Overall, the accuracy-over-epochs graph confirms 

that the YOLOv8n-cls model not only converges 



 

 

Figure 4: Accuracy over Epochs 

3.8   F1 Score 

In multi-class classification problems such as 

crack severity assessment, relying solely on 

accuracy can be misleading—especially when class 

distributions are imbalanced or some categories 

are more difficult to distinguish than others. This 

is where the F1-score becomes crucial. The 

F1-score balances precision (how many predicted 

positives were correct) and recall (how many 

actual positives were correctly identified), 

providing a single metric that reflects both false 

positives and false negatives. The macro F1-score 

is the unweighted average of F1-scores across all 

classes, treating each class equally, regardless of 

how many instances it has. In contrast, the micro 

F1-score aggregates the contributions of all classes 

by counting total true positives, false negatives, 

and false positives, giving more weight to larger 

classes. 

In this model’s classification report, both the 

macro F1-score and micro F1-score are 0.9818, 

indicating high and consistent performance across 

all categories. The alignment of these two metrics 

suggests that the model performs well not just 

overall, but also at the per-class level, 

demonstrating fairness and balance in its 

predictions. Particularly notable is the model’s 

ability to maintain near perfect F1-scores (1.00) 

for critical classes like “Moderate” and “Small” 

cracks while still achieving strong scores for more 

challenging categories like “Very Large” and “No 

Crack.” This balanced performance is essential in 

real-world applications, where misclassifying even 

a single high-severity crack could lead to safety 

risks or costly maintenance delays. Thus, strong 

and closely aligned macro and micro F1-scores 

confirm the model's robustness and reliability in 

structural health monitoring tasks. 

3.9   Precision-Recall (PR) Curve 

The Precision-Recall (PR) curve shown in Figure 5 

illustrates the model’s ability to balance precision 

and recall across all six classes (five severity 

categories and no crack) in the crack classification 

task. In this curve, each class, Hairline, Small, 

Moderate, Large, Very Large, and No Crack, is 

plotted with a nearly flat line at the top of the 

graph, with average precision (AP) values of 1.00 

for every class. This outcome strongly suggests 

near-perfect performance, where the model 

maintains both high recall and high precision 

throughout the range of thresholds. 

This is particularly significant in real-world 

scenarios where false positives and false negatives 

have serious implications. For instance, high 

precision ensures that when the model predicts a 

"Very Large" or "Corrosive" crack, it is almost 

always correct, minimizing unnecessary repairs. 

Conversely, high recall ensures that critical 

damage is not overlooked. The ability to 

consistently perform well in both dimensions 

across all categories, including the often 
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robustness, reinforcing its reliability for 

deployment in structural health monitoring 

systems. 

effectively, but does so with high stability and 



 

misclassified "No Crack" class, demonstrates a 

robust and well-calibrated model. 

Another key takeaway from this PR curve is the 

stability of model confidence. The flat segments 

near the top indicate that the model sustains its 

high performance across a wide range of 

threshold values. This is valuable for deployment 

in varying operational conditions where 

confidence thresholds might need to be adjusted 

to favor either sensitivity or specificity depending 

on safety requirements. 

 

Figure 5: Smoothed Precision-Recall Graph for Each Class 

IV.​ CONCLUSION 

This research presents a comprehensive and 

highly accurate approach to classifying concrete 

crack severity using the YOLOv8n-cls model. 

Starting from foundational convolutional neural 

network-based detection, the project evolved to 

encompass multi-class classification aligned with 

engineering standards. The dataset was carefully 

curated and reorganized into six distinct 

categories, with labels reflecting real-world 

structural implications. 

The model was trained in an augmented dataset of 

over 11,000 images and validated on 1,600 

additional samples. It achieved accuracy of 99.9%, 

reflecting strong generalization and class-wise 

performance. The precision-recall curve 

confirmed outstanding reliability, with Average 

Precision (AP) of 1.00 for each of the six main 

crack classes. These results point to a model that 

maintains high confidence and prediction stability 

across a range of decision thresholds, an essential 

trait for real-world deployment. The model’s 

inference speed of 0.4 milliseconds per image 

supports applications in embedded systems, UAV 

inspection, and real-time structural monitoring 

environments. 

The evolution from basic crack detection to 

contextual classification marks a critical 

advancement in infrastructure safety assessment. 

By embedding engineering relevance into each 

decision, the model helps bridge the gap between 
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AI perception and civil engineering priorities. This 

research offers a deployable, interpretable, and 

efficient solution for automated crack severity 

assessment, enabling faster, safer, and more 

objective evaluations of structural health. 
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