Scan to know paper details and
author's profile

Deep Learning-based Severity Classification of
Concrete Cracks using YOLOvVS for Structural
Health Analysis

Carson Bowling, Luke Pierini & Wisam Bukaita. Ph.D

Lawrence Technological University Southfield, U.S.

ABSTRACT

Crack detection and severity classification are essential tasks in structural health monitoring, especially
for critical civil infrastructure such as roads and bridges. Traditional methods rely heavily on manual
inspection, which is time-consuming, costly, and prone to human error. This study introduces a
computer vision approach using the YOLOv8n model to automatically classify concrete surface
conditions into six categories, ranging from "No Crack" to "Very Large Crack." This approach addresses
the critical gap between binary detection and actionable severity interpretation in civil engineering
inspections. After augmenting and preprocessing the dataset, the model was trained over 10 epochs and
achieved high classification accuracy ranging from Top-1: 97.1% to Top-5: 99.9% on a multi-class
dataset of over 11,501 annotated images.

Keywords: deep learning, crack detection, YOLOv8n-cls, infrastructure monitoring, concrete cracks,
image classification, structural health monitoring, severity classification, uav inspection, real-time
assessment.

Classification: DCC Code: 624.042.7

Language: English

LJP Copyright ID: 392932
Print ISSN: 2631-8474
Online ISSN: 2631-8482

Great Britain

Journals Press

London Journal of Engineering Research

Volume 25 | Issue 3 | Compilation 1.0 I

© 2025. Carson Bowling, Luke Pierini & Wisam Bukaita. Ph.D. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncom-mercial 4.0 Unported License http.//creativecommons.org/licenses/by-nc/4.0/), permitting
all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.






Deep Learning-based Severity Classification of
Concrete Cracks using YOLOvS for Structural
Health Analysis
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ABSTRACT

Crack detection and severity classification are
essential tasks in structural health monitoring,
especially for critical civil infrastructure such as
roads and bridges. Traditional methods rely
heavily on manual inspection, which is
time-consuming, costly, and prone to human
error. This study introduces a computer vision
approach using the YOLOuv8n model to
automatically  classify  concrete  surface
conditions into six categories, ranging from "No
Crack" to "Very Large Crack." This approach
addresses the critical gap between binary
detection and actionable severity interpretation
in civil engineering inspections. After
augmenting and preprocessing the dataset, the
model was trained over 10 epochs and achieved
high classification accuracy ranging from Top-1:
97.1% to Top-5: 99.9% on a multi-class dataset of
over 11,501 annotated images. The model
displayed strong generalization across all
categories and fast inference speeds reaching 0.4
ms per image. These results validate the YOLOv8
classifier’s capability for fine-grained severity
classification using a lightweight YOLO variant,
supporting rapid and accurate infrastructure
assessment and paving the way for scalable
deployment on drones and mobile devices in
real-time field scenarios.

Keywords: deep learning, crack detection,
YOLOV8n-cls, infrastructure monitoring, concrete
cracks, image classification, structural health
monitoring, severity classification, uav inspection,
real-time assessment.
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. INTRODUCTION

By moving beyond detection and into contextual
classification, this project contributes a scalable,
interpretable, and safety-focused tool for civil
infrastructure inspection. As governments and
engineers seek more proactive methods to assess
and maintain aging structures, automated crack
severity classification represents a critical
advancement in ensuring public safety and
resource-efficient intervention.

Concrete cracking is among the most prevalent
and early detectable indicators of structural
distress in bridges, pavements, and public
infrastructure. These visual signs, while common,
can range in consequence from harmless surface
blemishes to critical structural failures. According
to Beckmann et al. [1], cracks left unassessed may
propagate quickly, leading to severe degradation,
moisture intrusion, and rebar corrosion. This
underscores the wurgent need for inspection
systems that not only detect cracks but also
evaluate their severity in real time. Over the past
decade, deep learning has significantly advanced
the automation of crack detection. Semantic
segmentation models such as U-Net have been
widely adopted due to their pixel-level precision
in  identifying crack patterns. U-Net’s
encoder-decoder architecture has proven effective
in medical and infrastructure imaging, offering
high-resolution maps that clearly delineate crack
contours. However, U-Net and similar
segmentation models often require large datasets
and intensive training resources. Furthermore,
their output is typically limited to visual
localization, with minimal integration of semantic
interpretation such as severity levels. Meanwhile,
ResNet-based detectors have been employed for
crack image classification due to their strong
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feature extraction capabilities. ResNet's residual
learning framework enables deeper networks
without vanishing gradients, allowing accurate
binary classification between crack and no-crack
images. However, these models still often fail to
distinguish nuanced differences in crack width,
depth, and spread—factors essential for practical
engineering decisions. To enhance performance,
some researchers have proposed hybrid
approaches, combining CNNs with handcrafted
features, SVM classifiers, or decision-tree logic to
embed domain knowledge. While these methods
show improved accuracy in specific scenarios,
they are often complex to implement, less
generalizable, and difficult to scale for real-time
field deployment. While prior research has shown
the utility of CNNs and segmentation models for
basic crack detection, these systems typically stop
at binary classification, offering no contextual
interpretation of risk. However, in practice,
engineers must make safety decisions based not
only on whether damage exists, but on how severe
and urgent that damage is. Human visual
inspection, even among trained professionals, can
vary depending on lighting, image quality, and
experience. Krisada et al. [2] note that such
variability becomes especially dangerous when
distinguishing between moderate surface cracks
and deeper structural damage.

This study addresses those limitations by
implementing a YOLOv8n-cls model that
classifies cracks across six severity categories,
aligned with engineering standards. As a
lightweight and fast architecture originally
designed for object detection, YOLOv8n offers
real-time classification  capability = while
maintaining high accuracy, even on edge devices.
By moving beyond detection and into contextual
classification, this project contributes a scalable,
interpretable, and safety-focused tool for civil
infrastructure inspection. As governments and
engineers seek more proactive methods to assess
and maintain aging structures, automated crack
severity classification represents a critical
advancement in ensuring public safety and
resource-efficient intervention.

Concrete cracking is among the most prevalent
and early detectable indicators of structural

distress in bridges, pavements, and public
infrastructure. These visual signs, while common,
can range in consequence from harmless surface
blemishes to critical structural failures. According
to Beckmann et al. [1], cracks left unassessed may
propagate quickly, leading to severe degradation,
moisture intrusion, and rebar corrosion. This
underscores the urgent need for inspection
systems that not only detect cracks but also
evaluate their severity in real time. Over the past
decade, deep learning has significantly advanced
the automation of crack detection. Semantic
segmentation models such as U-Net have been
widely adopted due to their pixel-level precision
in  identifying crack  patterns. @ U-Net’s
encoder-decoder architecture has proven effective
in medical and infrastructure imaging, offering
high-resolution maps that clearly delineate crack
contours. However, U-Net and similar
segmentation models often require large datasets
and intensive training resources. Furthermore,
their output is typically limited to visual
localization, with minimal integration of semantic
interpretation such as severity levels.

Meanwhile, ResNet-based detectors have been
employed for crack image classification due to
their strong feature extraction capabilities.
ResNet's residual learning framework enables
deeper networks without vanishing gradients,
allowing accurate binary classification between
crack and no-crack images. However, these
models still often fail to distinguish nuanced
differences in crack width, depth, and
spread—factors essential for practical engineering
decisions.

To enhance performance, some researchers have
proposed hybrid approaches, combining CNNs
with handcrafted features, SVM classifiers, or
decision-tree logic to embed domain knowledge.
While these methods show improved accuracy in
specific scenarios, they are often complex to
implement, less generalizable, and difficult to
scale for real-time field deployment.

While prior research has shown the utility of
CNNs and segmentation models for basic crack
detection, these systems typically stop at binary
classification, offering no contextual
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interpretation of risk. However, in practice,
engineers must make safety decisions based not
only on whether damage exists, but on how severe
and urgent that damage is. Human visual
inspection, even among trained professionals, can
vary depending on lighting, image quality, and
experience. Krisada et al. [2] note that such
variability becomes especially dangerous when
distinguishing between moderate surface cracks
and deeper structural damage.

This study addresses the limitations of traditional
crack detection by implementing a YOLOv8n-cls
model that classifies concrete surface cracks into
six severity categories. These categories are
aligned with industry standards such as the
American Concrete Institute (ACI 224R-01) and
AASHTO Bridge Inspection guidelines, which
define crack width thresholds and provide visual
assessment criteria used in determining
maintenance urgency and repair methods. Unlike
traditional YOLO detectors that localize objects
using bounding boxes, the YOLOv8n-cls variant is
tailored for image-level classification, removing
detection heads to assign a single severity label
per image. Despite its lightweight design
originally intended for object detection,
YOLOvV8n-cls maintains real-time performance
and high accuracy, making it ideal for deployment
on edge devices.

By advancing from simple detection to
context-aware classification, this research offers a
scalable and interpretable solution for structural
health monitoring. The model’s severity outputs
are directly actionable, consistent with
professional inspection protocols, and suitable for
integration into existing workflows—such as
UAV-based data capture, mobile inspection apps,
and embedded systems—supporting on-site
decision-making in real time.

Beyond immediate assessment, this classification
framework can also feed into predictive
maintenance systems and life-cycle cost
estimation models, helping engineers and asset
managers prioritize interventions and optimize
resource allocation. In doing so, the proposed
method contributes to safer, smarter, and more
proactive infrastructure management.

Il LITERATURE REVIEW

Accurate assessment of concrete cracks is vital for
maintaining the integrity of civil infrastructure.
Over the years, research has evolved from
physics-based  simulations to  data-driven
methods, reflecting the growing need for
automation, speed, and interpretability in
inspections. Early approaches relied on numerical
modeling and traditional image processing, but
these proved limited in real-world conditions.
This review traces the evolution of automated
concrete crack analysis by grouping prior research
into several chronological and thematic
categories:

2.1 Numerical Modeling of Concrete Behavior

Numerical simulation has historically played a
crucial role in understanding the behavior of
concrete under load. Beckmann et al. (2012) used
the Discrete Element Method (DEM) to simulate
concrete fracture and crack evolution, validating
the results with experimental data [1]. Their
model captured crack initiation and propagation
patterns, aiding in structural failure prediction.
Dzolan et al. further explored the role of
shrinkage in reinforced concrete structures,
emphasizing the importance of time-dependent
effects in numerical simulations [3]. While
accurate, these methods are computationally
expensive and not scalable for real-time or
field-based inspections.

2.2 Traditional Computer Vision Techniques

Before deep learning, crack detection relied on
classical computer vision methods, such as edge
detection, morphological operations, and
thresholding. These techniques struggled with
noise, lighting changes, and complex textures.
Wang et al. (2024) used machine vision and
skeleton analysis to extract features of cracks from
processed images [8]. Although such methods laid
the foundation for automation, their limited
robustness in  uncontrolled environments
necessitated more intelligent solutions.
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2.3 Deep Learning-Based Crack Detection

With the success of CNNs, researchers turned to
deep learning for more robust and scalable crack
analysis. Park et al. (2020) introduced a system
combining deep learning with structured light
scanning to detect and quantify concrete cracks
with high precision [7]. Chaiyasarn [2] and
Golding et al. [4] developed integrated
CNN-based systems capable of identifying and
mapping cracks across diverse structures. These
approaches significantly improved accuracy, yet
most remained focused on binary detection rather
than severity interpretation.

24 YOLO-Based Advancements

YOLO models have recently become popular for
real-time crack detection due to their speed and
accuracy. Xu et al. (2025) extended YOLOvS8-seg
for crack segmentation and quantification [9].
Their model incorporated advanced modules like
SPPF-MSA and SPDConv, achieving superior
accuracy and efficient deployment through
pruning and knowledge distillation. Additionally,
they introduced a skeletonization pipeline to
quantify crack geometry with over 90% accuracy.
Zhu et al. (2024) introduced FD2-YOLO,
combining spatial and frequency-domain features
to detect fine cracks in aerial and ground-level
images, outperforming both YOLO-based and
transformer-based models [12]. However, both
studies focused on detection or segmentation—not
classification—limiting their utility for prioritizing
repairs.

Raushan et al. compared YOLOv3—YOLOvio
across various image conditions, showing
YOLOv4’s superior precision and robustness
under complex visual backgrounds [14]. Mohanty
and Pani (2023) further combined YOLO with
machine learning for strength prediction in
mining-affected structures [13]. These works
confirm YOLO’s adaptability but highlight the lack
of image-level, multi-class severity classification
aligned with inspection standards.

25 UAV and Edge Computing Applications

Yang et al. (2022) and others have emphasized
the synergy of UAVs and edge computing for

infrastructure monitoring. UAV-enabled
inspection allows access to hard-to-reach
structures, while real-time inference at the edge
enables immediate assessment [10]. This fusion is
ideal for emergency response and large-scale
condition surveys. However, many deployed
models focus on detection and segmentation
rather than nuanced severity interpretation.

2.6 Cross-Domain Innovations

To demonstrate YOLO’s versatility, researchers
have applied it beyond civil engineering. Li et al.
proposed THDet, a compact YOLOvS8-based
model for helmet detection, optimized for speed
and edge deployment [5]. Liang et al. used an
ensemble of YOLO variants for butterfly
classification, enhancing performance on small,
diverse datasets [6]. While tangential, these
studies illustrate = YOLO’s flexibility for
lightweight, domain-adapted modeling and
motivate its application in concrete crack severity
classification.

2.7 ldentified Research Gaps

e Real-Time  Multi-Severity  Classification:
Existing YOLO-based methods focus primarily
on binary crack detection or pixel-level
segmentation, with little attention to severity
gradation essential for civil infrastructure
triage.

e Deployable Models: Most advanced models
are too resource-intensive for edge
deployment. There is a need for lightweight
classifiers that maintain accuracy without
sacrificing speed.

e Standards Integration: Few studies align their
outputs with established civil engineering
inspection standards, limiting practical use by
field engineers.

This study addresses these gaps by using
YOLOv8n-cls—a classification-specific variant of
YOLO—trained to -categorize cracks into six
severity levels aligned with ACI 224R-01 and
AASHTO guidelines. Table 1 presents a
comparative summary of prior studies and the
proposed analysis.
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Table 1: Comparative Summary of Prior Studies and Proposed Work

Dataset

Performance

Study Method/Model Task Type Stz S Output Type (Top-1/mAP/F1) Notes
Xu et al. YOLOvS8-seg + |Segmentation + Custom Crack masks + | mAP? 6.2%, IoU? segrrf:r?tt;tl;(c)fl and
. _ 0,
(2025) Pruning Measurement (real-world) geometry 4% quantification
. Dual-backbone with
Zhu et al. FD2-YOLO Detection RDD2022, Bounding PT,'R‘ecallT, frequency and spatial
(2024) UAV-PDD2023 boxes Precisiont fusion
Raushan et [YOLOv3-YOLOv . 3,750 varied Bounding YOLOv4: F1 = Tested across
al. (2023) 10 Detection images boxes 88.9% complex
' ' backgrounds
Mohanty & | YOLO + ML Detection + Satellite, LIDAR. Damage + Predictive
. .. Strength ’ ’ MAE, RMSE, RSE|| maintenance in
Pani (2023) prediction . . GPS Strength ..
Estimation mining zones
Proposed _ o Real-time, aligned
Work | YOLOv8n-cls Image = 11,501 annotated | g oo clags | TOP-1=97-1%, | i A CT/AASHTO,
Classification crack images Top-5 = 99.9%
(2025) edge-ready
. METHODOLOGY earl warnin systems for infrastructure
y g y

This study proposes a structured pipeline for the
classification of concrete crack severity using a
deep learning model based on YOLOv8n-cls. The
methodology integrates four major phases: (1)
dataset preparation, (2) model configuration, (3)
training and validation, and (4) performance
evaluation. Each phase is aligned with the goal of
building a scalable, accurate, and deployable crack
severity classifier. In this research, image
classification is essential to enabling the AT model
to accurately detect surface cracks in construction
materials such as concrete. Each image in the
dataset is labeled into 5 severity categories and
the no crack category, forming the foundation of
the model’s supervised learning process. These
labels allow the model to learn how to
differentiate between the severity of structurally
compromised surfaces as well as those that are
not based on features appearing in each category.

The classification task is critical because cracks
often appear in various forms, from thin hairline
fractures to wide, deep fissures, and under
different lighting conditions or surface textures.
Training the model on a diverse and correctly
labeled dataset, it learns to recognize subtle
variations in shape, brightness, and texture,
indicating cracks. In practice, this model's ability
to correctly classify these images enables
automated crack detection and classification
systems, reducing or replacing the need for
manual inspections. It also plays a vital role in

maintenance, helping engineers prioritize repairs
and avoid structural failures.

This study presents a comprehensive deep
learning framework for the automated detection
and classification of cracks on structural concrete
surfaces. The core of this framework is built upon
the YOLOv8 architecture, specifically the
YOLOvV8n-cls variant, which was meticulously
selected for its optimal balance of speed, accuracy,
and computational efficiency. This architecture is
particularly well-suited for real-time applications
and resource-constrained environments, such as
those encountered in Unmanned Aerial Vehicle
(UAV)-based inspections or mobile-device
applications. The overall model architecture, as
illustrated in Figure 2, is a multi-layered system
designed to process and classify concrete surface
imagery with high precision. The architectural
components and their functions are as follows:

e Input Layer: The model accepts input images
of size 256x256 pixels with three RGB color
channels. This standardized input size ensures
consistent processing and computational
efficiency.

e Data Augmentation Layer: To enhance the
model's generalization capabilities and
prevent overfitting, a suite of data
augmentation techniques is applied to the
input images. These techniques include
random shifts in width and height (up to
+10%), a zoom range of +10%, and horizontal
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flipping. The use of nearest neighbor
interpolation ensures that these
transformations do not introduce spurious
artifacts. This process simulates the natural
variability of real-world imagery and improves
the model's robustness.

Backbone: The backbone of the model is the
CSPDarknet architecture, specifically the
efficient and compact variant from YOLOvS8n.
This layer is responsible for extracting a
hierarchical set of features from the input
images through a series of convolutional
blocks. The CSP (Cross-Stage Partial)
structure is optimized for efficient feature
extraction, reducing computational overhead
while preserving rich semantic information.
Neck (PAN + FPN): Following the backbone, a
combined Path Aggregation Network (PAN)
and Feature Pyramid Network (FPN)
architecture forms the model's neck. This
component is crucial for feature fusion,
enabling the network to combine high-level
semantic features from deep layers with

low-level, high-resolution spatial features
from early layers. This fusion process
strengthens the model's semantic

understanding and significantly enhances its
ability to localize features, a critical step for
accurate classification.

Classification = Head:  Diverging from
traditional YOLO architectures that perform
object detection with bounding box
regression, this model utilizes a dedicated
Classification Head. This head is designed to
predict a single class label for the entire input
image, rather than detecting and localizing
objects within it. The model's task is to
categorize the concrete surface into one of six
predefined classes: "Hairline," "Small,"
"Moderate,” "Large," "Very Large," or "No
Crack."

Output Layer: The final output of the model is
a Softmax vector of size 6, corresponding to
the number of classification categories. The
model's prediction is the class with the highest
probability value in this vector.

Training Configuration: The base model, a
lightweight YOLOVS classifier, was trained for
10 epochs. The loss function used to guide the

training process was Cross-entropy, a
standard choice for multi-class classification
problems. The model's performance was
evaluated using a comprehensive suite of
metrics, including Accuracy, Fi-Score, a
Confusion Matrix, and the Precision-Recall
Curve, ensuring a thorough assessment of its
predictive capabilities.

The selection of YOLOv8n-cls as the core
architecture was a deliberate choice driven by the
specific requirements of structural health
monitoring. This model offers several key
advantages over alternative architectures:

e Efficiency: Compared to computationally
intensive models like ResNet or EfficientNet,
which are designed for high accuracy on
large-scale datasets at the expense of speed
and memory, YOLOv8n-cls is a lightweight

classifier variant. This optimization for
real-time inference makes it ideal for
deployment on hardware with limited

resources, such as embedded systems or
mobile devices.

e Task-Specific Optimization: Unlike
segmentation-based approaches that require
pixel-level annotations and are
computationally expensive, the classification-
focused head of YOLOv8n-cls allows for rapid
categorization of crack severity. This provides
a direct and efficient solution for automated
condition assessment without the overhead of
detailed, pixel-level mapping.

e Scalability: The modular design of the
YOLOvVS8 framework facilitates a streamlined
workflow for training and deployment. This
enhances the scalability of the proposed

solution, making it easily adaptable to
large-scale structural health monitoring
programs.

3.1 Dataset

The “Crack Dataset” on Kaggle, Yatata [11] is a
collection of labeled images specifically created
for training machine learning models to detect
surface cracks. It includes two categories: “Crack”
and “No Crack,” with each image clearly showing
damaged or undamaged surfaces like concrete or
pavement, as shown in Figure 1.
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a) Crack

b) No Crack

Figure 1: Crack Dataset Samples

The dataset used in this study is designed to train
the selected models to detect and classify concrete
cracks under diverse real-world conditions,
making it suitable for applications in
infrastructure inspection, construction safety, and
automated maintenance systems. To ensure the
model's ability to generalize effectively to unseen
surfaces, the dataset includes images from varied
sources and conditions. Each sample consists of a
raw image along with its corresponding mask.
Initially, the dataset contained 8,819 images of
cracked concrete and 1,184 images without visible
cracks. To balance the dataset for classification
purposes, a subset of 3,600 crack images was
selected and combined with the no-crack samples.

These 3,600 crack images were then categorized
into six distinct severity classes, including one “no
crack” category, through a structured expert
survey. The survey involved 30
professionals—civil engineers, inspectors, and
contractors—with 5 to over 20 years of field
experience in concrete construction and structural
evaluation. Participants classified the images
based on visual crack characteristics, primarily
width, and structural implications, in line with
widely recognized standards such as the American
Association of State Highway and Transportation
Officials (AASHTO) codes. These codes emphasize
crack severity in the context of inspection, safety,
and serviceability of reinforced concrete
structures.

The severity classification criteria used in the
labeling process were as follows:

No Crack: No visible signs of surface damage.
Hairline Cracks: insignificant cracks that are

very narrow cracks, often less than 0.012
inches (0.3 mm) in width, that are generally

not a cause for immediate concern and may
not even be considered a defect.

e Small Cracks: Narrow cracks under 0.012
inches (0.3 mm) in width, concentrated in a
small area and often densely spaced.

e Moderate Cracks: Cracks ranging from 0.012
to 0.05 inches (0.3—-1.3 mm) in width,
potentially allowing water ingress and
indicating the need for further inspection.

e Large Cracks: Cracks 0.05 inches (1.3 mm) or
wider, possibly reflecting structural issues or
advanced material degradation or lead to
accelerated deterioration of the concrete.

e Very Large Cracks: Cracks significantly wider
than 0.05 inches (1.3 mm), including patterns
of deep longitudinal and transverse cracking
that result in isolated sections or "island
concrete."

This expert-guided labeling process produced a
high-confidence ground truth dataset, serving as

the foundation for evaluating the
YOLOvV8n-cls-based classification model. The
final class distribution and examples are

summarized in Table 2.
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Table 2: Crack Categories Samples

Severity Level Image

Severity Level

Hairline Large
Small Very Large
Moderate No Crack

3.2 YOLOvS8 Architecture

This study presents the comprehensive technical
implementation of a deep learning model
designed for crack detection in structural concrete
images. The methodology covers all essential
stages of the pipeline—from data preprocessing
and augmentation to the design, training, and
deployment of the YOLOvS8 architecture as shown
in Figure 2. A step-by-step overview of the
codebase is provided to demonstrate how raw
imagery is processed, enhanced, and fed into the
model to ensure accurate and efficient
classification. Each phase—such as image
enhancement, dataset partitioning, and model
training—has been meticulously structured to
maximize robustness, accuracy, and
computational performance. By integrating Al
and computer vision, this implementation offers a
practical and scalable solution for real-time
infrastructure monitoring. In particular, it focuses
on developing a high-speed, YOLOv8-based
classification system capable of detecting and
distinguishing concrete cracks by width and
severity, thereby supporting automated condition
assessment in structural engineering applications.

The model architecture shown in Figure 2
consist of Input Layer, Data Augmentation Layer,
Backbone: CSPDarknet (YOLOv8n variant), Neck:

PAN + FPN, Head: Classification Head, Output
Layer, and Training Configuration.

In the input phase, images are processed with
size: 256x256 RGB that visualize concrete surface
images. In the Data Augmentation Layer,
techniques that are used is shifting width and
height +10%, zoom range +10%, horizontal flip,
nearest neighbor to improve generalization,
prevent overfitting, and simulate real-world
variability. The Backbone layer, extracting
hierarchical image features and compact and
efficient convolutional blocks optimized for speed
and accuracy. The Neck layer (PAN + FPN)
feature fusion across different scales, and
strengthens  semantic = understanding and
enhances spatial localization. The classification
Head replaces bounding box detection with class
prediction, and predicts one of 6 class labels
(Hairline, Small, Moderate, Large, Very Large, No
Crack). In the Output Layer, a softmax vector of
size 6 (number of categories) interpreted with
highest probability is chosen. The Training
Configuration base model is a lightweight
YOLOVS8 classifier over 10 epochs, loss function
using Cross-entropy. It is Evaluated based on
accuracy, F1-Score, confusion Matrix,
precision-recall curve YOLOv8n-cls was selected
as the backbone architecture for this study due to
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its unique balance between speed, accuracy, and
computational efficiency, making it particularly
well-suited for edge deployment scenarios such as
UAV-based inspections or mobile applications.
Unlike heavier classification models like ResNet
or EfficientNet, which offer high accuracy at the
cost of increased memory and inference time,
YOLOv8n-cls is a lightweight classifier variant

based approaches that require detailed pixel-level
annotations and longer processing time, the
classification head in YOLOv8n-cls allows for
rapid severity categorization without
compromising overall performance. Additionally,
the modular YOLOvV8 framework facilitates
streamlined training and deployment, further
enhancing the scalability of the proposed solution

optimized for real-time applications with limited in practical structural health monitoring
hardware resources. Compared to segmentation- workflows.
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Figure 2: Model Architecture

3.3 Augment Data

Data augmentation is a fundamental technique in
deep learning, particularly useful when working
with image datasets that may be limited in size or
diversity. In this study, data augmentation is
applied to artificially expand the training dataset
by introducing slight variations to the original
images. These variations include shifting the
image slightly to the left or right, up or down
(width and height shifts), zooming in or out, and
flipping the image  horizontally. = Such
transformations help the model become more
robust by exposing it to a wider range of image
orientations and compositions, improving its
ability to generalize to new data. Additionally,
these techniques help prevent overfitting by
ensuring the model does not become too narrowly
tailored to the original training images. All
augmented images are generated using
appropriate fill techniques to maintain visual
integrity at the image borders. As a result, this
process enhances the overall quality and diversity
of the dataset, ultimately contributing to more

accurate and reliable crack detection in structural
imagery.

The following list is a description of what each
type of augmentation does and how much it
affects the image. These are randomly distributed
for each image that is processed, so there is a high
chance for each image an augmentation can occur
twice. For example, an image may be shifted 20%
left even with the variable set to 10%. With these
ranges the augmentation does not remove any
important information of the image, allowing for
more noise in what the model will be able to
identify.

1. Width and height shift (0.1): Randomly shifts

images horizontally and vertically by 10%.

2. Zoom range (0.1): Randomly zooms in or out
by 10%.

3. Horizontal flip (True): Flips
horizontally to introduce variation.

4. Fill mode (nearest): Fills empty spaces
created by transformations using the nearest
pixel values.

images
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The function augment class() applies these
transformations to images in each folder as shown
in Table 3. It ensures that each class has a
specified target number of images by calculating
how many augmentations each original image
needs. The images are then loaded, converted to
arrays, and passed to the Image Data

Generator.flow() function, which generates
augmented images and saves them to the
specified directory. This method ensures that the
dataset remains balanced and diverse, improving
the model's ability to recognize patterns and
variations in real-world data.

Table 3. Data Augmentation Original vs. Augmented Image Samples

Shift Up 20%
Shift Left 10%

Augmentation Type Original Image Augmented Image

S
i

Flip
Shift Left 20%
Shift Down 10%

Flip
Shift Left 20%
Shift Down 10%

f)

34 Class Mapping

Since YOLOvV8 requires class folders to be
numbered starting from o0, we wuse a
class_mapping dictionary to convert our original
human-classification category folders such as
Category_1_Hairline, Category_2_Small into
numeric folder names (o, 1, 2, ...) that YOLOvVS
expects. This mapping allows us to reorganize the
dataset automatically, ensuring that YOLOV8 can
correctly associate each image with its class label
based solely on the folder structure, without
needing separate label files for classification tasks.

3.5 Model Training

In the training segment, we begin by initializing
the YOLOvVS8 classification model using the
pre-trained lightweight base model
yolov8n-cls.pt. The model is trained on the
reorganized dataset found under version_1.1/
Categories_ Augmented, which includes images
sorted into five severity-based categories. All
input images are uniformly resized to 256x256
pixels to match model expectations. Training is

conducted over 10 epochs, leveraging GPU
acceleration to optimize performance.

Following training, the model is evaluated on a
separate validation dataset to assess its ability to
generalize to unseen examples. This validation
phase is essential to verify that the model’s strong
performance is not due to overfitting on the
training data. Once complete, we locate the most
recent training run directory, from which we
extract the model weights and training logs for
further  analysis. These outputs enable
downstream visualization and deployment,
ensuring traceability and reproducibility of model
behavior.

3.6 Confusion Matrix

The confusion matrix, illustrated in Figure 3,
serves as a key diagnostic tool for evaluating the
performance of a classification model. It presents
a comprehensive comparison between predicted
and actual labels, offering insight into the model’s
ability to correctly distinguish between classes.
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The matrix includes four core components:

e True Positives (TP): Cases where the model
correctly identifies a positive instance.

e False Positives (FP): Instances where the
model incorrectly classifies a negative case as
positive.

e True Negatives (TN): Cases where the model
correctly identifies a negative instance.

e TFalse Negatives (FN): Instances where the
model fails to detect a positive case, predicting
it as negative.

Hairline

Large Moderate small

Very Large

2 o 0

No Crack

Moderate
Predicted

Hairline Small

By analyzing the distribution of these values, one
can assess not only overall accuracy but also
precision, recall, and the balance of class-specific
predictions. To achieve this in the model we must
first flatten the validation images into one folder
for our model to predict.

100

- 80

60

- 40

-20

o 5

No Crack

Large Very Large

Figure 3: Confusion Matrix on Flatten Validation Dataset

3.7 Accuracy

Monitoring accuracy over training epochs is a
critical part of evaluating and refining deep
learning models. It helps researchers understand
how well a model is learning over time, detect
potential overfitting or underfitting, and make
informed decisions about early stopping, learning
rate schedules, or architecture changes. For
multi-class classification problems like crack
severity analysis, these plots provide insight into
the model’s convergence behavior and consistency
across iterations.

Figure 4 shows the Top 1 and Top 5 accuracy of
the YOLOv8n-cls model across 10 training epochs.
The Top 1 accuracy curve begins at approximately
90.1% in the first epoch and steadily climbs,
reaching about 95.7% by the final epoch. This
gradual increase with minor fluctuations, such as
a dip around epoch 4 followed by a strong

recovery demonstrates a healthy learning curve.
Importantly, the model continues improving
beyond the midpoint, suggesting that additional
epochs could lead to even better results without
immediate signs of overfitting.

Meanwhile, the Top 5 accuracy remains
remarkably stable, hovering just below 100%
throughout the training process. This almost
perfect Top 5 performance indicates that the
correct label consistently ranks among the
model’s top predictions, even in the early stages of
training. Such a pattern is particularly valuable in
real-world applications where multiple severity
levels might appear visually similar, and model
confidence can be leveraged to inform inspection
priorities.

Overall, the accuracy-over-epochs graph confirms
that the YOLOv8n-cls model not only converges
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effectively, but does so with high stability and deployment

robustness, reinforcing its reliability for

in structural health monitoring

systems.

Accuracy

08

0.88

0.86

0.64

—T0p 1

I3

Epochs

m—T0p 5

Figure 4: Accuracy over Epochs

3.8 Fi1Score

In multi-class classification problems such as
crack severity assessment, relying solely on
accuracy can be misleading—especially when class
distributions are imbalanced or some categories
are more difficult to distinguish than others. This
is where the Fi-score becomes crucial. The
F1-score balances precision (how many predicted
positives were correct) and recall (how many
actual positives were correctly identified),
providing a single metric that reflects both false
positives and false negatives. The macro Fi-score
is the unweighted average of Fi-scores across all
classes, treating each class equally, regardless of
how many instances it has. In contrast, the micro
F1-score aggregates the contributions of all classes
by counting total true positives, false negatives,
and false positives, giving more weight to larger
classes.

In this model’s classification report, both the
macro Fi-score and micro Fi-score are 0.9818,
indicating high and consistent performance across
all categories. The alignment of these two metrics
suggests that the model performs well not just
overall, but also at the per-class level,
demonstrating fairness and balance in its
predictions. Particularly notable is the model’s
ability to maintain near perfect Fi-scores (1.00)
for critical classes like “Moderate” and “Small”
cracks while still achieving strong scores for more
challenging categories like “Very Large” and “No

Crack.” This balanced performance is essential in
real-world applications, where misclassifying even
a single high-severity crack could lead to safety
risks or costly maintenance delays. Thus, strong
and closely aligned macro and micro Fi-scores
confirm the model's robustness and reliability in
structural health monitoring tasks.

3.9 Precision-Recall (PR) Curve

The Precision-Recall (PR) curve shown in Figure 5
illustrates the model’s ability to balance precision
and recall across all six classes (five severity
categories and no crack) in the crack classification
task. In this curve, each class, Hairline, Small,
Moderate, Large, Very Large, and No Crack, is
plotted with a nearly flat line at the top of the
graph, with average precision (AP) values of 1.00
for every class. This outcome strongly suggests
near-perfect performance, where the model
maintains both high recall and high precision
throughout the range of thresholds.

This is particularly significant in real-world
scenarios where false positives and false negatives
have serious implications. For instance, high
precision ensures that when the model predicts a
"Very Large" or "Corrosive" crack, it is almost
always correct, minimizing unnecessary repairs.
Conversely, high recall ensures that critical
damage is not overlooked. The ability to
consistently perform well in both dimensions
across all categories, including the often
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misclassified "No Crack" class, demonstrates a
robust and well-calibrated model.

Another key takeaway from this PR curve is the
stability of model confidence. The flat segments
near the top indicate that the model sustains its
high performance across a wide range of

threshold values. This is valuable for deployment
in varying operational conditions where
confidence thresholds might need to be adjusted
to favor either sensitivity or specificity depending
on safety requirements.

1.0 4

0.8 1

Precision
=]
o

0.4

Hairline (AP=1.00)
small (AP=1.00)
Moderate (AP=1.00)
Large (AP=1.00)
Very Large (AP=1.00])
No Crack {AP=1.00)

0.2 1

SURNRER

o 0.2 0.4

0.6 08 10

Recall

Figure 5: Smoothed Precision-Recall Graph for Each Class

V. CONCLUSION

This research presents a comprehensive and
highly accurate approach to classifying concrete
crack severity using the YOLOv8n-cls model.
Starting from foundational convolutional neural
network-based detection, the project evolved to
encompass multi-class classification aligned with
engineering standards. The dataset was carefully
curated and reorganized into six distinct
categories, with labels reflecting real-world
structural implications.

The model was trained in an augmented dataset of
over 11,000 images and validated on 1,600
additional samples. It achieved accuracy of 99.9%,
reflecting strong generalization and class-wise

performance. = The  precision-recall curve
confirmed outstanding reliability, with Average
Precision (AP) of 1.00 for each of the six main
crack classes. These results point to a model that
maintains high confidence and prediction stability
across a range of decision thresholds, an essential
trait for real-world deployment. The model’s
inference speed of 0.4 milliseconds per image
supports applications in embedded systems, UAV
inspection, and real-time structural monitoring
environments.

The evolution from basic crack detection to
contextual classification marks a critical
advancement in infrastructure safety assessment.
By embedding engineering relevance into each
decision, the model helps bridge the gap between
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AT perception and civil engineering priorities. This
research offers a deployable, interpretable, and
efficient solution for automated crack severity
assessment, enabling faster, safer, and more
objective evaluations of structural health.
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