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. INTRODUCTION

The general form of the well known navier stokes (momentum) equations (com-
pare to [6]) in three dimensions for compressible fluids in space and time reads
as follows:
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—

o
p((,;;Jr(z?V)U) = -Vp+ pAvi+ A+ p)V(V-0) + f (1)
where its elements are:

e The laplace operator A
e The gradient operator V

e The parameters of the equation: the ”Volume-force” density vector field
f: R® = R (in Newton/m3), the viscosity (A + ) and the density of the
viscosity p. We denote the set of function pairs w = (p,v) for which the
navier stokes equation system holds by L.

We will show that the four dimensional solution field of this system of dif-
ferential equations is underspecified and possesses a solution for almost any
arbitrary v € C?(R* R?), the twice differentiable functions from R* to R3. A
comparison to the well known transport equation from which the navier stokes
equation system is constructed of, or maybe to the known laplace and poisson
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equations which are already solved (explicitly in three dimensions, see [7]) or
certainly to the one and two dimensional navier stokes equations systems leads
unfortunately not to new methods for solving our equations. Those will certainly
not be solvable without any notion of lebesgue integration. We will therefore try
to invert the (functional) operators within the compressible momentum equa-
tions as still, a good notion of understanding is provided by using the three
dimensional lebesgue integral (since the "household” of the chemical entropy of
the equations must be fullfilled at each point in time within incompressible fluid
dynamics). As well one could compare to the case of the stochastic navier stokes
equations in one, two or three dimensions (see [2] and [5]). Moreover and specif-
ically, to any two or three dimensional stochastic partial differential equation
using a probabilistic measure, the set of Lebesgue integration zerosets in three
(space) or four (space and time) dimensions does differ in general from the set
of probabilistic zerosets of the probability measure of the stochastic integration
which is used to construct the stochastic equations and which gives the proba-
bility densities of the possible and probable solution paths of the equations. (see
literature of the theory of stochastic integration, stochastic differential/integral
equations (SDE) and stochastic partial differential equations in more than one
dimension (SPDE)). Indeed, our experience shows that the methods obtained
from the mentioned related equations are not directly relevant to the three di-
mensional case (see also [4]). In this work, we show smoothness and existence
of the solution of the navier stokes equations in three dimensions, (even though
the time variable makes it a four dimensional equation) as required interna-
tionally from the CMI in Oxford and provide it in the form of the largest set of
functions solving the equations, depending on the given parameters ( f; Py A+ ).
As a well known and so called ”millenium riddle” (see also [8], Andrés Boldori,
2024, as well as [3]), its solution is also expected to be humanistic! But must
we necessarily deal with fluid dynamics if we want to solve the 3-dimensional
navier stokes equations from above? And if we do, does the solution of the
general case, within compressible fluid dynamics, differ from the solution of the
particular incompressible case? The ideas of this chapter do in any case not
replace any mathematical proof.

. NECESSARY SMOOTHNESS CONDITIONS OF A SOLUTION PATH (VECTOR FIELD) OF
THE 3 DIMENSIONAL COM PRESSIBLE NAVIER STOKES MOMENTUM EQUATIONS.
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2.1 Particular Special Cases of the Navier Stokes Equations

(see also: [1]) The navier stokes equations are by far not just an ”artificial”
system of equations having no meaning, but exist within many specified con-
texts of real nature environnements. They arise from physical laws and can be
combined with other equations. One could observe that it is not possible to fail
the navier stokes equations without failing any physical law in addition. As a
mathematical equation, at least the following four particular special cases must
be taken into account:

1. v =0 (identical) and p = 0 fullfills the equations if and only if f = 0.

2. v =0 fullfills the equations for: p(x,y, z,t) =
— 7 i@,y 2, t)dwo + [V (= fa(z, yo, 2, 1)) dyo —
[ @Y (= fa(@o, yo, 2, 1))dyo) /dxo)dzo + [~ (—f3(x,y, 20, 1)
Ydzo— [*_(d([” (= fs(z0, ¥, 20, t))dz0) /dxo)dzo+c(t) by ”inserting”
since of — f = Vp. (Notice that the expression of p is no solution

if we take indefinite integrals since of possibly differing integration
constants)
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3. The mathematical and overall theoretical case of :
%fot f(x,y, 2, t0)dto = v(z,y,2,t) with f(t) = Ov(z,y,2,t)/0t = 0,
outside a finite nonemp-ty domain D (usually the volume of a vis-
cosity). This case must be solved like the ordinary compressible mo-
mentum navier stokes equations. Then, inside D :

p((T-V)0) = =Vp+ pAd+ (A + p)V(V - 7)

4. In this case, in addition to the momentum equations, newtons second
law is holding: F = m - a(z,y, z,t) = m - dv(z,y,z,t)/0t. And the
external force field f as a parameter of the equations is a part of the
overall force field F'. See sections 3.2 and 3.3 for compressible and
incompressible fluid dynamics of the momentum equations and their
solutions.

2.2 A Solution of the Navier Stokes Equation for Which V' is Not in C3(R4, R3)

Taking "e¢m” and ”s” (second) as ”standard” units during the following the-
oretical experiment, a vertical pipe of diameter d = 5, length [ = 1000 and
the z-axis as main axis within a standard coordinate system (3-dimensional eu-
clidean space), starting at z = 950 and ending at z = —50 which possesses
a "bottom” of plastic or gum, is filled with water and contains a ”wedge” of
shape and location so that the water flow velocity v along it takes the form
v(x,y,z,t) = (0,vq,v3)(x,y, 2,t) :

va(2) := 2% and v3 = |v(x,y,z,t) |2 -2 0<y<1l,-01<z<0.1
va(2) := —2% and v3 = {v(x,y,z,t) |2 —25-1<y<0,-01<2<0.1

with v having a constant lenght along the wedge. v2(z) as a function of z is
not 3 times differentiable at the edge of the wedge (0,0,0,t). Neglecting the
friction of the wedge and the water flowing out the pipe if opening its bottom, a
velocity field is created by the acceleration (gravity) of the water within the pipe
obtaining a constant velocity after the initial acceleration. The acceleration of
the water within can as well be used to create a constant velocity along the
wedge: The hight h(t) of the water level within the pipe while opening its
bottom in the form of a hole of variable diameter dy(t) is:

h(t) = (Vpipe - Volumeoui(t))/d = (Vpipe - /29 - h(t) - Areanoie(do(t)))/d
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h(t) = ((v2g/d) - Areanoie(do(t)) —
V((V29/d) - Areanoie(do(t)))? — 4 Vyipe /d) /(~2)

Areanoie(do(t)) = (d - h(t) = Vyipe) /\/29 - h(2)

lIl. EXISTENCE OF A SOLUTION OF THE 3 DIMENSIONAL NAVIER STOKES MOMENTUM
EQUATION

3.1 Boundary Conditions

The system of compressible navier stokes equations is a differential equation
in the variable p, which is easily solvable as soon as v is given. Even though
the compressible navier stokes momentum equation (system) differs (slightly)
from the imcompressible one, our attempt here to solve the equations does not
include any of the classical initial value problems of differential equations. Not
mathematically, but from physics, the theory of the navier stokes equations may
be connected to the theory of fluid dynamics.
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3.2 Compressible Fluid Dynamics

The momentum equation in three dimensions (equation (1)) can be written as
follows:

—

@Z +(7- V)7 ) +uAT+ N+ p)V(V-3) + f=Vp (= grad(p)) (2)

where the equation:

grad(p) = f (3)

can easily be solved since of:

p=c(y,z1t)+ /fldx =c(x,2,t) + / fody = c(x,y,t) + /fgdz (4)

and the expressmn of section 2.1 (particular special case 2.) follows by setting
f =— f within equation (3). If we went a step further ahead and now replaced
— f from the expression of the particular special case of section 2.1 again by

. o .
—frew =G = —p (81) + (¥ V)U) + pAT+ A+ w)V(V - 0) + f, we'd get an
expression for p:

p(x,y, 2,1) f_ 91 (w0, y, z, t)dxo + [¥__(92(x, 90, 2, 1))dyo —
. f_ (92(z0, Yo, 2,t))dyo) /dxo)dxo + [~ (g3(z,y, 20,))dz0
f_ f (93(x0,y, 20,1t))dz0)/dxo)dzo + c(t)

The solution space L for the navier stokes equations with the definition of §
from above, is:

L::{( (z,y,2,t), f gl(xo,y,ztdonrfy x, Y0, 2, t))dyo —

o (d(f (92(1‘0,9072 t))dyo) /dxo)dzo + [~ (g3(x,y, z0,t))d20

- If. f (g3(x0,y, 20,1t))dz0)/dxo)dzo + ( )) | The second component of
the pair does exist and c(t) : R>o — R}
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The arbitrary shift c(t) applies to the entire vector field (to any v which is
"integrable enough”, the expression within the solution set is a solution of the
three dimensional navier stokes momentum equation, for any arbitrary c(t) :
R>¢ — R). The domain of definition of the velocity vector field v should not be
the empty set.

3.3 Incompressible Fluid Dynamics

A Fluid in physics is said to be incompressible if its velocity vector field v(x, y, 2, t)has
zero divergence everywhere in the sense of differential geometry: div(v) =0 .
The solution space of the incompressible navier stokes momentum equations
must simply be restricted to functions and vector fields having divergence zero
everywhere:

LGcompresmble = {( (.’E Y, z, t f_ g1 xOvyaZ t dx0+fy 92 X, Yo, 2, t))dyo—
I fy (92(z0, Yo, 2,t))dyo) /dxo)dxo + [~ (g3(z,y, 20,t))dz0

- f (d( [ (93(w0,y, 20, t))d20)/dxo)dzg + ( )) | The second component of
the pair does « exist, ¢(t) : R»o — R and div(v) =0}
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again by setting g

ov -
Gg:=-p (8_: + (U V)ﬁ) + pAT+ A+ p)V(V -70) + f

3.4 Conclusion

For now we have shown smoothness and existence for the compressible and
incompressible navier stokes momentum equation system in three dimensions.
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