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ABSTRACT

A two-stage (rough and accurate) computation strategy was developed in this study in order to
accurately calculate the minimum one-sided Hausdorff distance between continuous plane curves
under a similarity transformation. In the rough computation, a mathematical programming model
based on the discretisation method was constructed to ascertain the minimum one-sided Hausdorff
distance. In addition, the linearisation method in this model was elucidated. Based on that, the
solutions were attained through a stable and efficient simplex method and 5 characteristic points
were obtained. In the accurate computation, a local iterative accurate algorithm for computing the
minimum one-sided Hausdorff distance was established after 4 similarity transformation
parameters were separated from 10 curve parameters corresponding to 5 characteristic points.
Similar results, which verify the feasibility of this algorithm, were obtained based on rough and
accurate computations in a numerical example. Moreover, a roundness error evaluation
programming model based on the minimum one-sided Hausdorff distance and relevant linear
solution methods was also developed. Furthermore, the numerical examples based on this model were
compared with those based on a conventional roundness error computation model. The results
revealed that similar computation circle centre coordinates, roundness error, and characteristic
points can be obtained based on both models. The computational efficiency can be significantly
improved via the method proposed in this study.
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I INTRODUCTION

Early Hausdorff distance computation is mainly applied to pattern recognition and image processing,
including the recognition of faces, fingerprints, characters, handwriting, and licence plates. However,
there has been little investigation into the computation of the Hausdorff distance relative to non-point
sets. In the conventional method, continuous geometric objects are discretised into point sets, based on
which the approximate Hausdorff distance between continuous geometric objects can be indirectly
obtained by computing the Hausdorff distance between point sets. More recently the computation of
the Hausdorff distance between continuous geometric objects has been studied owing to potential
demands in geometric modelling, computational geometry, computer graphics, and other fields. In
2008, Alt et al."! from Germany demonstrated four cases of the one-sided Hausdorff distance between
two C' continuous plane curves. Specifically, the Hausdorff distance may present at two endpoints of
two curves, with one of the two-points being the end-point of one curve, double perpendicular foot
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points, or the intersection point of the midline of one curve and another curve. Furthermore, they
provided nonlinear constraint simultaneous equations corresponding to the four cases. The Hausdorff
distance between plane curves was computed with the aid of a standard algebraic equations solver. In
the same year, Elber et al.'®! from Israel generalised these four cases of the one-sided Hausdorff
distance between two C' continuous plane curves to space curves/ curved surfaces. They obtained the
corresponding Hausdorff distance using a self-designed algebraic equations solver. In 2010, Chen et
al.3! tackled the lack of research in finding the root of nonlinear simultaneous equations in previous
studies [1-2].

They explored the geometric clipping method for calculating the Hausdorff distance between two
B-spline curves. As per their algorithm, sufficient conditions allowing the Hausdorff distance to appear
at the end of a curve were provided. The curve segmentation technique and rolling circle clipping
method were adopted to transform the Hausdorff distance computation between two curves into that of
the minimum or maximum distance between points and curves, thus improving the stability and
computational efficiency of the algorithm. In the same year, Kim et al.'¥! proposed a real-time algorithm
to accurately calculate the Hausdorff distance between two plane free-form curves. Firstly, G*
continuous double circular arcs were employed to approximate the free-form curves under given
tolerances. The arcs were subsequently subjected to distance mapping and saved to a graphics
hardware depth buffer. Finally, most of the redundant arc segments were trimmed to improve the
computational efficiency related to the Hausdorff distance. In 2011, Bai et al.!! proposed a polyline
method to obtain the Hausdorff distance between plane curves. Based on the algorithm, continuous
free-form curves were approximated with polylines under a given measurement. An incremental
algorithm was subsequently utilised to compute the one-sided Hausdorff distance between line
segments and polylines. Since two clipping strategies are used in this method, the ineffective line
segments in the final Hausdorff distance computation are clipped which significantly improves the
computational efficiency.

In terms of the computation of the minimum Hausdorff distance between geometric objects under a
certain transformation, Huttenlocher!® proposed an algorithm to compute the minimum Hausdorff
distance for one- and two-dimensional point sets. The one-dimensional algorithm of the minimum
Hausdorff distance between point sets was applied to the comparison computation of planar polygons
under an affine transformation by using the affine arc length to represent planar polygons. The
two-dimensional algorithm was used to compare digital images. Additionally, the Hausdorff distance
definition was extended to enable it to be used for the comparison between partial sets. In further
studies, Huttenlocher'” improved the minimum Hausdorff distance algorithm under a translation
transformation between point sets and line segment sets by using a Voronoi diagram. According to two
given polygons, Alt'® proposed that the Hausdorff distance between two polygons can be minimised by
the rigid transformation of one of the polygons, and therefore the approximate matching between
polygons can be realised. Chew et al.!¥ investigated the computational complexity of the minimum
Hausdorff distance algorithm between geometric objects under a rigid transformation for planar line
segments that are composed of point sets and polygon sets that are composed of point sets. Hur et al.[**!
adopted the conic section represented by a quadratic rational Bezier curve to perform the best uniform
approximation (BUA) for the convolution curve of two plane curves. The objective was to minimise the
Hausdorff distance between the conic section and the convolution curve. Because the weight factor of
the rational Bezier curve was the only optimisation variable in the approximation curve in the model,
the study revealed that there were two characteristic points on the approximation curve, and both the
distance between them and the convolution curve were the Hausdorff distance, and the derivative signs
of the two distances with respect to the weight factor were opposite. This constituted the necessary and
sufficient conditions for minimising the Hausdorff distance between two curves. An iterative algorithm
was also formulated for computing the BUA based on the necessary and sufficient conditions.
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To ensure equal precision and computational efficiency, Gu et al.'! proposed a rough and accurate
staged matching method between plane curves under an affine transformation. Liang et al."*! designed
a matching method between plane curves using their projection along any direction based on a weak
perspective projection model. Gruen et al.l'8! established a similarity transformation model consisting
of seven parameters between curved surfaces as per the least squares principle. In addition, they
considered the matching method between curved surfaces and applied it to the automatic mosaic of 3D
point cloud data. Rodriguez et al.'! analysed the similarity computation between 3D curves through
the string edit distance method. Yamany et al.l's) formulated a surface registration method based on a
genetic algorithm. Cao et al.t® transformed the Hausdorff distance computation between plane curves
into that of the minimum distance from points to curves. This method eliminated the drawback of
traditional methods, whereby different nonlinear simultaneous equations had to be solved separately
under four Hausdorff distance cases between plane curves. Moreover, they constructed an algorithm to
compute the one-sided Hausdorff distance between C2 continuous curves via two steps, namely rough
and accurate computations. Based on a previous study"®!, Cao et al.'” established a programming
model for the minimum one-sided Hausdorff distance between plane curves under a rigid
transformation and developed relevant solutions. Furthermore, they applied the model to line profile
error evaluation.

As suggested in relevant studies, the computation of the Hausdorff distance between continuous curves
and curved surfaces has attracted the attention of researchers in geometric modelling, computational
geometry, computer graphics, and other fields in recent years. However, it also prevents the wider
application of the Hausdorff distance in engineering. There are several issues in relevant research work.
1) A few studies have been conducted on the computation of the Hausdorff distance between free-form
curves and curved surfaces. In most cases, the Hausdorff distance was obtained by solving
simultaneous algebraic equations. Since the solution of these algebraic equations was either regarded
as a black box or obtained by a standard solver, the solutions with a reference value and geometric
significance cannot be fully provided. 2) Due to the complexity of concrete curves and curved surfaces
in engineering, research on the computation of the Hausdorff distance between continuous curves or
curved surfaces and the minimum Hausdorff distance under a certain transformation is still in its
infancy. At the same time the lack of relevant solution methods significantly hinders its extensive
application in the engineering field.

In this study, a mathematical programming model for computing the minimum one-sided Hausdorff
distance between plane curves under a similarity transformation was constructed based on a previous
study"” by supplementing the scale transformation parameters of approximation objects. A solution
strategy composed of two-stage (rough and accurate) computation was proposed for this model.
Moreover, a local iterative accurate algorithm for computing the minimum one-sided Hausdorff
distance for continuous curves was also constructed. On that basis, a roundness error evaluation
programming model, based on the minimum one-sided Hausdorff distance, was established and then
verified numerically.

. COMPUTATION OF THE MINIMUM ONE-SIDED HAUSDORFF DISTANCE BETWEEN
PLANE CURVES UNDER A SIMILARITY TRANSFORMATION

2.1 Mathematical Programming Model

It can be inferred from the definition of the one-sided Hausdorff distance that the computation of
h(A, B) involves the shortest distance from a point a on Curve A to Curve B. As per geometric error
evaluation theory and curve/curved surface approximation theory, this shortest distance is generally
called an error. When Curve B is allowed to undergo a similarity transformation, its position and scale

Computation of the Minimum One-Sided Hausdorff Distance between Plane Curves under a Similarity Transformation and Relevant
Applications in Roundness Error Evaluation

London Journal of Engineering Research

© 2025 Great Britain Journals Press Volume 25 | Issue 1 | Compilation 1.0



London Journal of Engineering Research

are transformed. The change in the parameter of the point on Curve B corresponding to the shortest
distance from a point on Curve A to Curve B is termed parameter transformation. When the shortest
distance from Point 2 to the transformed Curve B is also transformed, it is termed error
transformation. Therefore, the computation of 4(4, B) under a similarity transformation incorporates
position, scale, parameter, and error transformations.

The representation of Curve B under a similarity transformation is subsequently discussed. The
similarity transformation of the given plane curve B includes three motions; namely translation,
rotation, and scaling. The following homogeneous coordinates can be used to represent the translation
matrix, rotation matrix, and scaling matrix, respectively, including

I 0 ¢ cos@ —sinf O s. 0 0
T(tx,ty): 0 1 t,| R(0)=|sinf cos® 0 S(sx,sy): 0 s, 0 (1)
0 0 1 0 0 1 0 0 1

where, t.,t, represents the translation coordinates along the X and Y axes; 6 represents the rotation
angle; s,.,s, represents the scaling rations in the X and Y directions; To maintain the shape of the
graph unchanged before and after scaling, equal scaling would be adopted in the following discussion,
namely S, =5, =5. These parameters /! y,9 ,$ are collectively called the similarity transformation
parameter X.

After the above three motions, the expression of Curve B can be obtained as:

scosf —ssin@ ¢ || X
B(b,x)=T(tx,ty)~S(s)~R(6)~B(b): ssin@  scos@ £, || Y
0 0 111

(2)
=(Xscosf —Yssin€ +2, )i+ (Xssin6 + Yscos +1 )j

where, X,Y denotes the coordinates of Curve B in Frame {0,ij} ; they are all functions of the curve
parameter b.

From the perspective of the BUA of curves or curved surfaces, the one-sided Hausdorff distance
between two geometric objects is the maximum deviation of the approximation object from the
approximation target. Minimising the maximum deviation under some transformation is the
optimisation objective of the BUA. The process of minimising the maximum deviation is characterised
by saddle points and can therefore be explored by saddle point programming. Under a similarity
transformation, if the scale and position parameters of the approximation object are taken as
optimisation variables and the one-sided Hausdorff distance from the approximation object to the
approximation target is minimised as the optimisation objective, the definition of the minimum
one-sided Hausdorff distance can be expressed as the following mathematical programming form:

min A
X

st. h=maxmind(A(a),B(b,x)) (3)
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The first line in Equation (3) represents the objective function of the optimisation model and # is the
characteristic parameter. The second line represents the optimisation model constraint function;

namely that the characteristic parameter /# shall be the one-sided Hausdorff distance between two

curves under a certain set of transformation parameters X. d(A(a),B(b,x)) :HA(a)—B(b,x)H
represents the Euclidean distance between Point a on Curve A and Point b on Curve B under the
transformation parameter X.

The constraint function in the above model is the one-sided Hausdorff distance between two curves
under the transformation parameter X. According to the definition of the one-sided Hausdorff
distance between continuous curves in a previous study"®, it can be found that a pair of points
satisfying the one-sided Hausdorff distance is the point pair satisfying the maximisation of the
minimum distance and it also has the saddle point characteristics. Moreover, a saddle point
programming model for the Hausdorff distance computation between two curves can be established if
the curve parameters @ and b of two curves are taken as optimisation variables and the minimum
distance from a point on one curve to the other is taken as the optimisation objective. In other words,
the computation of the minimum one-sided Hausdorff distance is an optimisation in Type
min max min f, To simplify the optimisation process, Curve A would be discretised to complete the
computation of the shortest distance from each discrete point on Curve A to Curve B. On that basis, the
following mathematical programming model can be constructed to obtain the solution to the minimum
one-sided Hausdorff distance:

Following the discretisation of Curve A, the programming model given by Equation (3) can be
expressed as:

min  f(y)=h
st. G(y)=d(Aa),B(b,x)-h<0  i=12,.,m

4)

where, d (A(q,),B(b,,x)) represents the shortest distance from the discrete point ¢ on Curve A to
the transformed curve B(b,x), as presented in Figure 1. This can be computed according to the
shortest distance algorithm from the point to the curve in a previous study®; b, = b,(a,) represents the
curve parameter corresponding to the minimum normal distance mapping point of the discrete point
a; on Curve B(b,x); i represents the discrete point serial numbers, and 7 represents the total

number of discrete points on Curve A. x=(t 0,s) represents a similarity transformation

t
xobyo
parameter, and y = (h,X)=(h,t,,¢,,0,5) represents the optimisation variables of the saddle point

programming model.

0

Fig. 1: Planar Curves under Similarity Transformation
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It can be revealed from Equations (2) and (3) that the optimisation model constraint function given in
Equation (4) is not a linear combination of optimisation variables, but a nonlinear optimisation which
needs to be linearised.

2.2 Linearisation Solution to the Mathematical Programming Model

It can be seen from the above optimisation model that the nonlinear part of the optimisation variable is

included in the shortest distance @, . If the shortest distance in Equation (4) is regarded as a function
of the transformation parameter X, it can be expressed as follows:

di = di (A(ai)’B(bi X)) = ”A(ai) _B(bi ’X)” =g(x) = g(tx1ty’9’ S) (5)

If the transformation parameter f,,? yae, § isregarded as a first-order small quantity, it is called a small
error. After g(X) in Equation (5) is subject to Taylor's expansion at the zero point X, = (¢, £,0-6,5 5,)"
of transformation parameters and their second-order and higher-order small quantities are omitted,
the following expression can be obtained:

og og og og
X) = o(X )+ -2 At + -2 At +-2 A0 +-2 As

X

In the equation,

2(x,) = |A(a,) ~B(b;,x) )
A(a,)-B(b,x)|-B.(b,,x

a_g:_[ (a,)-B(5,%)] B/(5,,x) CNi=-N, ®
ot, |A(a,)-B(b,,x)|
a_g:_[A(ai)_B(biax)]'B;(biax) —_N.i=_-N_ (9)
a, ||A(a,.) -B(b,, x)” - ¥
% _ [A@)-BG.O]BG.0
0 JA@)-BG.] | NG+ XD=EN, — XN, (10)
oz _ _[A@)-BG] BB o
as |A@)-BG.0)| | NXi+Ep ==X N, =EN, (11)

where, g(X,) represents the shortest distance from a point @, on Curve A to Curve B before a
similarity transformation; Af, Aty AO and As represent the first-order increment of the

transformation parameter ¢

x,ty,@,s; X,,Y, represents the coordinates of the point on Curve B;

N,,,N,, represents the coordinates of the unit normal vector at a point on Curve B; B;,B'y,Bz,,B;

represents the first-order partial derivatives of Equation (2) for the transformation parameter ¢ ,¢ ,0,s-

x2tyo
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After Equations (6) - (11) are substituted into Equation (4), the following linear programming model for
computing the minimum one-sided Hausdorff distance between plane curves can be obtained:

min  f(y)=h
st.  G(y) =06 —NyAt, = N At — (XN, =Y N )AO - (XN, +YN;)As-h<0 (12)
i=12,---,m

where, n represents the characteristic parameter, that is, the one-sided Hausdorff distance from curve

Ato curve B; 6, =g(X,); and m represents the number of discrete points on the actual curve.

The above optimisation model has the variable #20. However, A8,Af At As are all free variables
without non-negative requirements. To achieve the solutions by the simplex linear programming
method, it can be arranged that X, = (AQ,Atx,Aty,AS)T =X, -X, and X,,X, >0. Then, the slack
variable ( X, >0) is introduced and the inequality constraint is transformed into an equality
constraint, finally an initial basic feasible solution can be obtained. Hence, the above linear
programming problem can be expressed in the following standard form:

min C'X
s.t. AX=b X0 (13)

where, C=(1,0,...,0)" | X =(h,X/,X],X])" represents a dimensional column vector of (m+9),
A=(I,A,,—A),~I) represents a matrix of mx(m+9), and I represents an m-order unit matrix;
b=(5,,...5,)", I,=(..,1)", and X; represent m-dimensional column vectors, and X, X;,X,
represents a 4-dimensional column vector; The upper corner mark T represents the matrix
transposition.

NXI N}’l XINYI_Y;NXI XINX1+Y1NYI
A,=| M M M M
NX NYm XmNYm_YN XmNXm+‘YmNY

m m* " Xm m _mx4

London Journal of Engineering Research

After the above model is solved by the simplex linear programming method, the characteristic
parameter 4 and the similarity transformation parameter AQ, Azx, Aty, As of Curve B can be obtained.
The value of the characteristic parameter can be considered as the minimum one-sided Hausdorff
distance from curve A to curve B.

To reduce any error caused by the linear geometric model, curve B can be rotated, translated, and
scaled, using the computation result of AQ,Atx,Aty,AS. The transformed curve can be regarded as a
new curve and the above process can be repeated until the absolute value of the transformation
parameters obtained from the computation of Equation (12) is less than the given precision.
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Under the similarity transformation, one of the two curves (e.g., Curve B) can usually be translated,
rotated, and scaled, so there are four degrees of freedom in Curve B. Therefore, when /#(4,B) reaches
its minimum, the equidistant line of Curve B has at least 5 points of tangency to Curve A, as shown in
Figure 2. Under this condition, due to the continuous changes in the Curve B scale parameter s, when
h(A,B) reaches the minimum, both the symmetric equidistant curves B, and B, of Curve B have
points of tangency to Curve A. In other words, Curve A is bidirectionally enclosed by the inner and
outer equidistant lines of Curve B and the maximum and minimum normal errors of Curve A relative to
Curve B are equal in value and opposite in sign. The distribution ratio of the tangency points for the
inner and outer equidistant curves B, and B, to Curve A can be 1:4 (4:1) or 2:3 (3:2).

Fig. 2 Minimum one-sided HD from curve A to curve B where curve A is fixed and curve B subjects to
the similarity transformation

2.3 Precise [terative Model

The mathematical programming model in the previous section can be utilised to compute the minimum
one-sided Hausdorff distance from discretised curve A to curve B. When the curve is originally
provided in the form of discrete points, for example, when the curve is a data point obtained by
measurement or the computational precision is not high, this method can meet the relevant
requirements. However, when Curves A and B are presented as continuous curves, in order to obtain
the precise minimum one-sided Hausdorff distance between both curves, it is necessary to conduct
local iterative optimisations based on the previous section. Finally, the precise minimum one-sided
Hausdorff distance from curve A to curve B can be obtained.

The approximate solution which satisfies the optimal condition can be obtained via the algorithm in the
previous section. There are 5 characteristic points on discretised Curve A which are optimally arranged
with the inner and outer equidistant lines of Curve B. It is necessary to construct a local iterative
optimisation model, so that the parameters of Curves A and B, corresponding to 5 equivalent
characteristic points, can meet the requirements of the one-sided Hausdorff distance.

As the local optimisation model contains 4 similarity transformation parameters and 10 curve
parameters corresponding to 5 characteristic points, with a total of 14 optimisation variables, it can be
considered a complex nonlinear problem. If these parameters can be solved together iteratively, the
solution process is prone to oscillation, which may induce convergence failure in the computation. To
reduce the computational difficulty and ensure computational stability, the precise iterative model is
iteratively solved using two steps (similarity transformation parameters and curve parameters).
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2.3.1 Similarity Transformation Parameter Iterative Solution

There are 5 initial points P,(i=1,...,5) on Curve A and the mapping points Q,(i=1,...,5) with the
shortest distance of P, on Curve B can be obtained by the algorithm of the shortest distance from
points to curves. After the position of Point P, is fixed, the distance between corresponding |P,Q,|
can be equalised by changing the position, direction, and scale of Curve B. Therefore, the conditional
expression can be provided:

HP1Q1 H = ”PzQz H

”PzQz” =|PQ;

P.0.[= [P, W
”P4Q4H - ||P5Q5 ”

where, the position of Point Q; is related to the similarity transformation parameter of Curve B and
its curve parameter b. Since Point Q; is the normal mapping point with the shortest distance of P,
on Curve B, its curve parameter is not independent, so b =bh(a). Hence, Equation (14) can be
expressed as:

fi(t,,1,,0,5)=0
fo(tst,,0,5) =0
f(t,51,,0,5) =0
filtt,,0,5)=0

(15)

After Equation (15) is subject to Taylor's expansion near the initial point and the small quantity above
the second order is omitted, the following expression can be obtained:

ot A+ fEAL + foAO + fiAs =0
Joo AL+ AL+ A0+ £ As =0
Jao + LA+ [ AL+ f,AD + fLAs =0
Jao T ILAL+ fLAL + fl,AO + fiAs =0

(16)

where, f,(i=1,2,3,4) represents the function value of Function f(f,,,,0,5) at the initial point;
f,;,f,y',f,é,f,; represents the first-order partial derivative of Function fi(tx,ty,(?,s) with respect to

txatyaea § , respectively. Equation (16) can be represented in a matrix form and the following expression
can be obtained:

fl; .fl; flle f1: Atx —J1o
L fy fo B || A || =S
B Fy fa L[ A6 | =f
f;l'x f4’y f4,9 .ﬁi’s As _f40

(17)
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The linear equations (17) can be solved to obtain the increments (Atx,Aty,AQ,AS) of similarity
transformation parameters and these increments can be employed to update the Curve B similarity
transformation parameters. Furthermore, the iterative process can be repeated until each similarity
transformation parameter increment is smaller than the given computation precision €.

2.3.2 lterative Solution of Curve Parameters

When the minimum one-sided Hausdorff distance from curve A to curve B is achieved, the optimality
condition and the one-sided Hausdorff distance condition are satisfied. The previous similarity
transformation parameter iterative process ensured that the optimality conditions were satisfied. The
condition satisfying the one-sided Hausdorff distance is discussed in this section. As reported in a
previous study®!, the one-sided Hausdorff distance between plane curves is generally presented in four
cases; double perpendicular foot points, one-to-two points, EA endpoints, and EB endpoints. Different
constraint equations exist for different cases. The corresponding constraint equations are established
according to the different situations of the 5 points on the actual Curve A before the iterative solution is
performed. In this study, the one-sided Hausdorff distance between plane curves under the
perpendicular foot point is selected as the example, and its corresponding conditions are:

(Pi_Qi)'BZZO (18)

(Pl.—Qi)-Al.=0 l=1,2,|_ ,5 (19)
Since the conditions of Equation (18) would definitely be satisfied, it is only necessary to locally
optimise the parameters of Curve A at the characteristic point. After the Curve B similarity
transformation parameters and the corresponding parameters b,(i =1,2,...,5) of characteristic points
on Curve B are set as initial points, the parameters of Curve A are the only undetermined variables in
Equation (19). Hence, Equation (19) can be expressed as:

gi(ai)zo i=12,..,5 (20)

where, a,(i=1,2,...,5) represents the curve parameter corresponding to the 5 characteristic points on
Curve A.

Since the solution of Equation (20) is performed based on the previous programming algorithm and
has a favourable initial point, the curve parameter increments Ag,(i =1,2,..,5) corresponding to the 5
characteristic points on Curve A can be directly obtained by the efficient univariate Newton's iterative
method. On that basis, each Curve A parameter can be updated and the iterative process can be
repeated until the parameter increment is smaller than the given computation precision €.

Due to the interaction between the iterative solution of the similarity transformation parameters and
that of the curve parameters, it is necessary to conduct these two iterative processes alternately until
the convergence conditions of the two iterative processes satisfy the requirements.

1.3 Numerical examples

The feasibility of the above algorithm is verified via numerical examples in this section. The original A
and B curves are closed curves represented by the cubic uniform B spline, incorporating 9o control
points. As shown in Figure 3, the red line represents Curve A and the blue line represents Curve B.
Curve A is presented as an outline of a Liriodendron chinense leaf. The Curve B control points are
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obtained by superimposing an error function with a 2mm amplitude on 9o Curve A control points.
Furthermore, the Curve B is transformed according to the following similarity transformation
parameters: 7., =15mm, { , =15mm, 0, =20°, and s, =1.2.

Fig. 3: The Original Curves A and B

The minimum one-sided Hausdorff distance #4.(4,B) from Curve A to Curve B can be calculated using
the following process. Firstly, Curve A is discretised according to its parameters and Curve B is
transformed from a B-spline form to a cubic piecewise Bezier curve through the algorithm in a previous
study"®. Subsequently, the shortest distance from each discrete point on Curve A to Curve B is
computed through the algorithm in a previous study®, which can be regarded as the original normal
error O, of Curve A relative to Curve B. The linear programming algorithm in Section 1.1 is then
employed to compute the minimum one-sided Hausdorff distance from curve A to curve B under a
similarity transformation. Subsequently, the corresponding transformation parameters, minimum
one-sided Hausdorff distance # (4, B), and corresponding characteristic point coordinates can be
obtained. The computation precision is 10 and the results are presented in Figure 4. The 5 pairs of
blue points represent the corresponding characteristic points obtained by the mathematical
programming method, and /;(4,B) =2.899780. The corresponding transformation parameters
include Af, =16.488852mm, Aty =15.939305mm, A@ =19.803339° and As =1.1960891. Based on
the programming model computation results, %.(4,B) can be solved precisely based on the local
optimisation model in Section 1.2. The final characteristic points are presented as 5 pairs of red points

in Figure 4, and /(4,B) =2.914350mm, which is highly similar to the mathematical programming
method results. The corresponding transformation parameters include Af =0.008716mm, Aty
=0.001226mm, A6 =0.007190° and As =1.000028.

Computation of the Minimum One-Sided Hausdorff Distance between Plane Curves under a Similarity Transformation and Relevant
Applications in Roundness Error Evaluation

London Journal of Engineering Research

© 2025 Great Britain Journals Press Volume 25 | Issue 1 | Compilation 1.0



London Journal of Engineering Research

12

Fig. 4. Refinement of the Characteristic Points by using the Local Optimization Approaches

. ROUNDNESS ERROR EVALUATION BASED ON THE MINIMUM ONE-SIDED
HAUSDORFF DISTANCE

2.1 Introduction

In addition to being applied to the aforementioned pattern recognition and curve matching, the
mathematical programming model based on the minimum one-sided Hausdorff distance can also be
used in the geometric error evaluation. The relevant geometric error evaluation model is simpler and
improves computational efficiency.

As the most common fits, cylindrical fits are reported to account for 80-85% of engineering
applications. The measurement and evaluation of cylindrical parts are important technical approaches
to ensure part precision. Currently, roundness errors are often evaluated using the minimum
circumcircle, maximum incircle, least squares, and minimum area methods™. Among them, the
minimum area method obtains the smallest unique evaluation results, which is consistent with the
roundness error definition in ANSI??!, ISO™! and national standards'?. As per the minimum area
evaluation method definition, two ideal concentric circles are used to contain the actual measured
elements and the minimum width of the containment domain can be used to represent the roundness
error. In the above evaluation process, the centre position and radius of the ideal circle can be changed.
The principle for evaluating the roundness error with the minimum area method is that when the
measured contour is contained by two concentric circles, at least four measured points are distributed
inside and outside of two concentric circles. Since the specific algorithm used to obtain the minimum
roundness error is not specified in any of the above standards®°2%!, some researchers have proposed
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geometric error evaluation models and algorithms since the publication of these standards. In some
existing studies*325! the roundness error evaluation is regarded as a double inclusion evaluation
according to the criteria of the minimum area evaluation method. In other words, there are two ideal
elements that contain the actual measured elements. Based on that, the following programming
algorithm can be constructed;

mil} & =&

uelRk

st \/(xl —u) +(y, —u,)’ <& (21)
VO =) + (3, —1)” 2&,
i=12,..n

where, [x,-ay,-]T represents the coordinates of a measurement point and ” represents the number of
measurement points; U= [ul,uz]T represents the centre of an ideal circle; &,,&, represents the radius
of the maximum and minimum containment circles. If & =R+{,,&§, =R+, is arranged, R
represents the radius of an ideal circle and &,,{, represents the maximum and minimum normal
errors. On that basis, the model from Equation (21) can be transformed into the saddle point
programming model provided by a previous study™’,

min ¢, -G,

ueR?

St CIZ\/(‘xi_ul)z—i_(yi_uZ)z -R

Cz S\/(x,‘ _u1)2 +(yi _u2)2 -R
i=12,...m

(22)

where, &,,¢, respectively represent the maximum and minimum normal errors from the point on the
actual measured element to the ideal element.

The roundness error evaluation model based on the minimum one-sided Hausdorff distance is
explored in the following section. Finally, the computation precision and efficiency are compared with
those in Equations (21) and (22) using numerical examples.
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2.2 Roundness Error Evaluation Programming Model Based on the Minimum One-Sided Hausdorft
Distance

If the measured actual contour is presented as Curve A and the ideal element is presented as Curve
B, the one-sided Hausdorff distance #4(A4,B) from Curve 4 to Curve B represents the maximum
deviation from Curve A to Curve B During the roundness error evaluation, the centre position and
radius of the ideal element B can be changed and the relevant vector equation can be expressed as:

B(b,x)=(X + Rcosb)i+ (Y + Rsinb)j (23)

where, x=[X,Y, R]T represents the transformation parameter vector and its components represent
the circle centre coordinates and radius of the ideal element B.
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From the perspective of the BUA, the one-sided Hausdorff distance between two geometric objects is
the maximum deviation of the approximation object from the approximation target. The optimisation
objective of the BUA is to minimise the maximum deviation under a transformation. If the
approximation object scale and position parameters are selected as optimisation variables and the
minimum one-sided Hausdorff distance from the approximate object to the approximation target is
selected as the optimisation objective, the following roundness error evaluation programming model

can be obtained after Curve A is discretised:

min  f(y)=h
st G(y)=d(A@),Bb,x)-h<0  i=12...m (24)

where, d (A(q,),B(b,,x)) represents the shortest distance from the discrete point @; on Curve A to
the ideal circle B(b,x) after transformation; b, =b,(a,) represents the curve parameter corresponding
to the minimum normal distance mapping mapping point of the discrete point a, on the ideal circle

B(b,X); i represents the discrete point serial number, and m represents the total number of discrete
points on Curve A. x=[X,Y,R]" represents the similarity transformation parameter and

y=[h,x]" =[h, X,Y,R]" represents the programming model optimisation variables.

It can be revealed that the optimisation model constraint function given in Equation (24) is not a linear
combination of optimisation variables, but a nonlinear optimisation which needs to be linearised.

2.3 Linear Solution Method

It can be seen from the above optimisation model that the nonlinear part of the optimisation variable is

included in the shortest distance .. If the shortest distance in Equation (24) is regarded as a function
of the transformation parameter X, it can be expressed as follows:

d =d (A(a).B(b,x)=|A@)-BH,X)|=g(x)=g(X,Y,R) (25)

If the distance function d, = g,(X) is subject to Taylor's expansion at the transformation parameter
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T
zero point Xy = (Xo,YsR))" and their second-order and higher-order small quantities are omitted, the
following expression can be obtained;

og, og, og,
(xX)=g. +—=LAX +—=LAY +—=LAR 26

In the equation,

g,(x,) = ”A(a:) —-B(b,,x) x=x
‘ (27)

g, _ [A@)-B(,%)]-B.(5,%)|
oX |A(a,)-B(®,.x)

Xi

=-N,-i=-N_ (28)

X=X,
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%:_[A(a,)—B(bi,x)].B'y(bpx)|
or [A@)-B(®, )

=-N,-j=-N, (29)

X=X,

%, [A@)-B(.)] B,

=L =N, -(coshji+sinhj)=+1 (30)
OR |A(a,)-B(b,.x)|

X=X,

where, g(x,) represents the shortest distance from a point @; on Curve A to the ideal circle B
before the transformation; AX,AY,AR represents the first-order increment of the transformation
parameter X,Y,R at the zero point X, =(X,,Y,,R,)" ; N,., N, represents the coordinates of the unit
normal vector at a point on the ideal curve; B;,B’y,B;a represents the first-order partial derivative of
Equation (23) for the transformation parameter X,Y,R.

After Equations (26) - (30) are substituted into Equation (24), the following linear programming model
to compute the minimum one-sided Hausdorff distance between plane curves can be obtained:

min  f(y)=nh
st. G(y)=g,(x))—N,AX -N AY+AR-h<0 (31
i=12,..m

where, /1 represents the characteristic parameter, namely the one-sided Hausdorff distance from
Curve A toCurve B and " represents the number of discrete points on the actual curve.

2.4 Optimal Conditions for the Minimum Hausdorff Distance

In terms of the programming model given in Equation (24), the conditions that should be satisfied at
the optimal solution point are called optimality conditions. According to the optimisation theory26-27,

the optimality condition in nonlinear programming is the K-T condition. If Y~ is the model local
optimal solution, it is required to have the following K-T condition;

VAY)+ D A VG(Y)=0

iel(X") ( 2)
220 iel(Y) 3
where, 1(Y")= {z‘

(G, (Y*) =() ) corresponding to the element ( 7 ) in the set is termed a tight constraint.

Gi(Y*)=0,1£i£ m} is termed a tight constraint index set and the constraint

The following expressions can be obtained from Equation (31);

vA(YH)=[t 0 0 o] (33)
. og 0g 0
VG,.(Y){—I a—i a—§ a_ﬂ (34)

After Equations (33) and (34) are substituted into the K-T condition equation (32), it can be seen that:
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D> Ab,=0 (35.a.b.0)

r . . .
where, b, = [in Nyl.] represents the vector corresponding to the tight constraint;
e, =cosbi+sinb,j.

It is evident from previous analysis that if the characteristic point falls on the outer containment circle
B, , it can be taken that N, -€, =1 If the characteristic point falls into the inner containment circle
B, , it can be taken that N,-e, =—1.When A, >0 (i=12,3,4), it can be found from Equation (35.c)

that the 4 characteristic points cannot completely fall on the outer containment circle B, or the inner
containment circle B;. This indicates that there is no characteristic point with a distribution ratio of
0:4 (4:0).

In a situation where the characteristic points’ distribution ratio is 1:3 (3:1), it is safe to assume that the
first characteristic point is on B, and the other three characteristic points are on B, . It can be
obtained from Equations (35.a) and (35.c) that:

1
A1=AZ+A3+A4=E (36)

When Equation (36) is substituted into Equation (35.b), it can be taken that:

1
b1 = 7(121')2 + /ﬁt3b3 + l4b4) (37)

The geometric meaning of the above equation is that the convex combination of characteristic points 2,

3, and 4 shall contain the vector b, corresponding to the characteristic point 1. Since the 4
characteristic points are distinct tight constraint points, the case represented by Equation (37) cannot
exist, specifically that there is no characteristic point with a distribution ratio of 1:3 (3:1).

Consequently, the characteristic points distribution ratio of the roundness error, evaluated by the
minimum area method on the inner and outer containment circles B, and B,, can only be 2:2.

Accordingly, the 1st and 2nd characteristic points can be arranged on B, and the other 2

characteristic points can be arranged on B. It can be deduced from Equation (35.b) that:

1
/’11"')*2:)‘3"'14:5 (38)

Under this circumstance, it can be taken that
Ab, +4,b, =4b,+4,b, (39)

As suggested in Equation (39), when the roundness error evaluation results are optimal, the
characteristic points on the inner and outer containment circles p and B, are distributed as
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intersecting lines, which is consistent with the roundness error evaluation criteria in the minimum area
method.

The K-T condition provides the necessary conditions for the optimal constrained nonlinear
optimisation solution. When the optimisation objective and constraint function in the optimisation
model are convex functions, the locally optimal solution is the global optimal solution. According to the
optimisation theory®®#7] linear programming belongs to convex programming. Meanwhile, the linear
programming model can guarantee higher precision under the assumption of small errors. Hence, the
minimum condition given in Equation (35) can be regarded as a necessary and sufficient condition for
reaching the global minimum.

2.5 Numerical Examples

Numerical example 1

The measured data is quoted from a previous study!®®), as presented in Table 1. The roundness errors in
the study are as follows: The centre coordinates and the radius of the ideal circle would be

[X*aY*aR*]T = [40-0007,50-0015a30-0000]T mm and the roundness error is 29.2816 um. Based on the
data in Table 1, the conventional roundness error model (Equation 21) and the Hausdorff
distance-based model (Equation 31) are compared in terms of their computation precision and
efficiency.

The average value of the ccT)ordinates of 25 data points listed in Table 1 is selected as the initial circle
centre coordinates [X,,%] . The average distance from each measurement point to the initial circle

centre coordinates is selected as the initial radius of the ideal circle &, . A computer with a Pentium IV
processor with a frequency of 2.8GHz and a 256 MB memory is adopted during this process. Based on

the model in Section 1.1, when the computation precision € is 107'° , the centre coordinates and the
* ¥ * T
radius of the ideal circle can be obtained as [X Y ,R ] =[40.000739,50.001530,30.000063]T mim.

The minimum one-sided Hausdorff distance is #.(4,B)= 14.640087um, the roundness error is
29.280175um, the high characteristic points are the 11th and 18th points, and the low characteristic
points are the 6th and 13th points. The average time for ten computations is 0.32ms. The results (circle
centre coordinates, roundness errors, and characteristic points) from the model given in Equation (21)
are similar to those computed by the model based on the minimum one-sided Hausdorff distance in
Section 1.1. The radii of the maximum and minimum containment circles are 30.014702620mm and
20.985422445mm, respectively, but the average time for ten computations based on the latter is
1.73ms, which is about 5.4 times that based on the former.
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Tab. 1 Initial data of Example 1

Serial number of X-coordinate .
. Y-coordinate/mm
measure points /mm
1 70.0150 50.0000
2 68.7900 58.4734
3 65.4060 65.9372
4 59.5675 72.7493
5 51.3791 77-7452
6 44.7944 79.6013
7 40.8903 79.9958
8 32.0312 78.9306
9 27.2296 77.1385
10 20.3993 72.7076
11 16.1556 68.2304
12 12.7184 62.4905
13 10.6380 56.0806
14 10.0183 49.2149
15 11.4275 40.8264
16 14.1050 34.8682
17 18.8168 28.7427
18 24.6321 24.2200
19 31.6833 21.1862
20 39.1626 20.0207
21 45.5204 20.5021
22 55.3996 24.2692
23 62.3561 30.0114
24 67.3540 37.6492
25 69.6190 45.2028

Numerical Example 2

The measured data is quoted from a previous study'®), as listed in Table 2. The computed results based
on the steepest descent algorithm in that study are presented as follows: The ideal circle centre

coordinates would be [ X”,¥" ] =[82.990941, 97.008387]" mm and the roundness error is 38.231m.

The initial centre coordinates and the radius of the ideal circle are constructed via the same method as
Example 1. When the computation precision ¢ is 107", the centre coordinates and radius of the ideal
circle computed based on the minimum one-sided Hausdorff distance model would be

* * * T
[X Y ,R ] =[82-990941,97'008387,30-029726]T mm, the minimum one-sided Hausdorff distance is

h,(4,B) = 19.115472m, and the roundness error is 38.230944um. The 8th and 20th points are the high
characteristic points and the 1st and 16th points are the low characteristic points. The average time for
ten computations is 0.28ms. The results (circle centre coordinates, roundness errors, and characteristic
points) computed by the model given in Equation (21) are similar to those computed by the model
based on the minimum one-sided Hausdorff distance. The radii of the maximum and minimum
containment circles are 30.048841860mm and 30.010610916mm, respectively, but the average time
for ten computations based on the latter is 1.64ms, which is about 5.9 times that based on the former.
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Tab. 2: Initial Data of Example 2

Serial number of X-coordinate

Y-coordinate /mm

measure points /mm

1 107.5811 114.2119
2 102.2909 119.9906
3 95.6848 124.2034
4 88.2128 126.5634
5 80.3826 126.9159
6 72.7251 125.2311
7 65.7612 121.6196
8 59.9721 116.3233
9 55.7576 109.7039
10 53.4073 102.2180
11 53.0774 94.3816
12 54.7849 86.7302
13 58.4107 79.7824
14 63.7075 74.0083
15 70.3176 69.8019
16 77.7899 67.4519
17 85.6152 67.1081
18 93.2669 68.7926
19 100.2245 72.4009
20 106.0093 77.6929
21 110.2199 84.3073
22 112.5676 91.7864
23 112.8977 99.6156
24 111.2129 107.2695

V. CONCLUSION

In this study, a two-stage (rough and accurate) computation strategy was proposed to achieve the
accurate computation of the minimum one-sided Hausdorff distance between continuous plane
curves under a similarity transformation. A programming model for computing the minimum
one-sided Hausdorff distance was developed for when the curve is provided in the form of
measurement points or extremely high computation precision is not required. In addition, a
programming model linearisation method was also formulated and a stable and efficient simplex
method!®®! was adopted to obtain solutions. Under the conditions of continuous curves with the
requirement to precisely solve the minimum one-sided Hausdorff distance, a local iterative
precision algorithm, based on the programming algorithm, was established to separate the
similarity transformation parameters from the curve parameters corresponding to characteristic
points. Subsequently, the minimum one-sided Hausdorff distance between continuous plane curves
can be accurately computed.

The geometrical meaning of the one-sided Hausdorff distance between plane curves and the
minimum one-sided Hausdorff distance under a similarity transformation was explored. The
geometrical denotation /(4,B) is that curve A is contained by two symmetrical equidistant curves
of curve B. When the inner and outer symmetrical equidistant curves completely contain curve A
with the narrowest width, half of the width value is called the one-sided Hausdorff distance from
curve A to curve B. Under a similarity transformation, the geometric meaning 4 (4, B) is that
when the width of the symmetric containment domain of curve B reaches the minimum, there are
at least 5 tangency points between curve A and the inner and outer symmetric equidistant curves of
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Curve B. The tangency points distribution ratio on the two equidistant curves can be 1:4 (4:1) or 2:3
(3:2). The maximum and minimum normal errors of curve A relative to curve B are equal in value
and opposite in sign.

3. A mathematical programming model based on the minimum one-sided Hausdorff distance was
applied to roundness error evaluation. Based on the local optimum condition (the K-T condition) of
constrained optimisation in optimisation theory, it can be demonstrated that the minimum
condition of one-sided Hausdorff distance from the actual curve to the ideal circle is equivalent to
the roundness error evaluation criteria in the minimum area method specified in international and
national standards. Compared with the conventional roundness error evaluation model based on
the minimum area method, the optimisation objective function is the radius difference between the
maximum and minimum containment circles and the number of constraint functions in the model
based on the minimum one-sided Hausdorff distance is only half that in the conventional model.
Therefore, the model constructed in this study can significantly improve the roundness error
evaluation efficiency. Furthermore, this method can also be applied to the evaluation of other
geometric errors by the minimum area method.
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