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ABSTRACT  

A two-stage (rough and accurate) computation strategy was developed in this study in order to 

accurately calculate the minimum one-sided Hausdorff distance between continuous plane curves 

under a similarity transformation. In the rough computation, a mathematical programming model 

based on the discretisation method was constructed to ascertain the minimum one-sided Hausdorff 

distance. In addition, the linearisation method in this model was elucidated. Based on that, the 

solutions were attained through a stable and efficient simplex method and 5 characteristic points 

were obtained. In the accurate computation, a local iterative accurate algorithm for computing the 

minimum one-sided Hausdorff distance was established after 4 similarity transformation 

parameters were separated from 10 curve parameters corresponding to 5 characteristic points. 

Similar results, which verify the feasibility of this algorithm, were obtained based on rough and 

accurate computations in a numerical example. Moreover, a roundness error evaluation 

programming model based on the minimum one-sided Hausdorff distance and relevant linear 

solution methods was also developed. Furthermore, the numerical examples based on this model were 

compared with those based on a conventional roundness error computation model. The results 

revealed that similar computation circle centre coordinates, roundness error, and characteristic 

points can be obtained based on both models. The computational efficiency can be significantly 

improved via the method proposed in this study. 

Keywords: continuous plane curve; minimum one-sided hausdorff distance; exact algorithm; 

comparison of computational efficiency; roundness error evaluation. 
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I.​ INTRODUCTION 

Early Hausdorff distance computation is mainly applied to pattern recognition and image processing, 

including the recognition of faces, fingerprints, characters, handwriting, and licence plates. However, 

there has been little investigation into the computation of the Hausdorff distance relative to non-point 

sets. In the conventional method, continuous geometric objects are discretised into point sets, based on 

which the approximate Hausdorff distance between continuous geometric objects can be indirectly 

obtained by computing the Hausdorff distance between point sets. More recently the computation of 

the Hausdorff distance between continuous geometric objects has been studied owing to potential 

demands in geometric modelling, computational geometry, computer graphics, and other fields. In 

2008, Alt et al.
[1]

 from Germany demonstrated four cases of the one-sided Hausdorff distance between 

two C
1
 continuous plane curves. Specifically, the Hausdorff distance may present at two endpoints of 

two curves, with one of the two-points being the end-point of one curve, double perpendicular foot 
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points, or the intersection point of the midline of one curve and another curve. Furthermore, they 

provided nonlinear constraint simultaneous equations corresponding to the four cases. The Hausdorff 

distance between plane curves was computed with the aid of a standard algebraic equations solver. In 

the same year, Elber et al.
[2]

 from Israel generalised these four cases of the one-sided Hausdorff 

distance between two C
1
 continuous plane curves to space curves/ curved surfaces. They obtained the 

corresponding Hausdorff distance using a self-designed algebraic equations solver. In 2010, Chen et 

al.
[3]

 tackled the lack of research in finding the root of nonlinear simultaneous equations in previous 

studies [1-2]. 

They explored the geometric clipping method for calculating the Hausdorff distance between two 

B-spline curves. As per their algorithm, sufficient conditions allowing the Hausdorff distance to appear 

at the end of a curve were provided. The curve segmentation technique and rolling circle clipping 

method were adopted to transform the Hausdorff distance computation between two curves into that of 

the minimum or maximum distance between points and curves, thus improving the stability and 

computational efficiency of the algorithm. In the same year, Kim et al.
[4]

 proposed a real-time algorithm 

to accurately calculate the Hausdorff distance between two plane free-form curves. Firstly, G
1
 

continuous double circular arcs were employed to approximate the free-form curves under given 

tolerances. The arcs were subsequently subjected to distance mapping and saved to a graphics 

hardware depth buffer. Finally, most of the redundant arc segments were trimmed to improve the 

computational efficiency related to the Hausdorff distance. In 2011, Bai et al.
[5]

 proposed a polyline 

method to obtain the Hausdorff distance between plane curves. Based on the algorithm, continuous 

free-form curves were approximated with polylines under a given measurement. An incremental 

algorithm was subsequently utilised to compute the one-sided Hausdorff distance between line 

segments and polylines. Since two clipping strategies are used in this method, the ineffective line 

segments in the final Hausdorff distance computation are clipped which significantly improves the 

computational efficiency. 

In terms of the computation of the minimum Hausdorff distance between geometric objects under a 

certain transformation, Huttenlocher
[6]

 proposed an algorithm to compute the minimum Hausdorff 

distance for one- and two-dimensional point sets. The one-dimensional algorithm of the minimum 

Hausdorff distance between point sets was applied to the comparison computation of planar polygons 

under an affine transformation by using the affine arc length to represent planar polygons. The 

two-dimensional algorithm was used to compare digital images. Additionally, the Hausdorff distance 

definition was extended to enable it to be used for the comparison between partial sets. In further 

studies, Huttenlocher
[7]

 improved the minimum Hausdorff distance algorithm under a translation 

transformation between point sets and line segment sets by using a Voronoi diagram. According to two 

given polygons, Alt
[8]

 proposed that the Hausdorff distance between two polygons can be minimised by 

the rigid transformation of one of the polygons, and therefore the approximate matching between 

polygons can be realised. Chew et al.
[9]

 investigated the computational complexity of the minimum 

Hausdorff distance algorithm between geometric objects under a rigid transformation for planar line 

segments that are composed of point sets and polygon sets that are composed of point sets. Hur et al.
[10]

 

adopted the conic section represented by a quadratic rational Bezier curve to perform the best uniform 

approximation (BUA) for the convolution curve of two plane curves. The objective was to minimise the 

Hausdorff distance between the conic section and the convolution curve. Because the weight factor of 

the rational Bezier curve was the only optimisation variable in the approximation curve in the model, 

the study revealed that there were two characteristic points on the approximation curve, and both the 

distance between them and the convolution curve were the Hausdorff distance, and the derivative signs 

of the two distances with respect to the weight factor were opposite. This constituted the necessary and 

sufficient conditions for minimising the Hausdorff distance between two curves. An iterative algorithm 

was also formulated for computing the BUA based on the necessary and sufficient conditions. 

Computation of the Minimum One-Sided Hausdorff Distance between Plane Curves under a Similarity Transformation and Relevant
Applications in Roundness Error Evaluation

L
on

d
on

 J
ou

rn
al

 o
f 

E
n

gi
n

ee
ri

n
g 

R
es

ea
rc

h

©2025 Great Britain Journals PressVolume 25 | Issue 1 | Compilation 1.02



To ensure equal precision and computational efficiency, Gu et al.
[11]

 proposed a rough and accurate 

staged matching method between plane curves under an affine transformation. Liang et al.
[12]

 designed 

a matching method between plane curves using their projection along any direction based on a weak 

perspective projection model. Gruen et al.
[13]

 established a similarity transformation model consisting 

of seven parameters between curved surfaces as per the least squares principle. In addition, they 

considered the matching method between curved surfaces and applied it to the automatic mosaic of 3D 

point cloud data. Rodriguez et al.
[14]

 analysed the similarity computation between 3D curves through 

the string edit distance method. Yamany et al.
[15]

 formulated a surface registration method based on a 

genetic algorithm. Cao et al.
[16]

 transformed the Hausdorff distance computation between plane curves 

into that of the minimum distance from points to curves. This method eliminated the drawback of 

traditional methods, whereby different nonlinear simultaneous equations had to be solved separately 

under four Hausdorff distance cases between plane curves. Moreover, they constructed an algorithm to 

compute the one-sided Hausdorff distance between C2 continuous curves via two steps, namely rough 

and accurate computations. Based on a previous study
[16]

, Cao et al.
[17]

 established a programming 

model for the minimum one-sided Hausdorff distance between plane curves under a rigid 

transformation and developed relevant solutions. Furthermore, they applied the model to line profile 

error evaluation. 

As suggested in relevant studies, the computation of the Hausdorff distance between continuous curves 

and curved surfaces has attracted the attention of researchers in geometric modelling, computational 

geometry, computer graphics, and other fields in recent years. However, it also prevents the wider 

application of the Hausdorff distance in engineering. There are several issues in relevant research work. 

1) A few studies have been conducted on the computation of the Hausdorff distance between free-form 

curves and curved surfaces. In most cases, the Hausdorff distance was obtained by solving 

simultaneous algebraic equations. Since the solution of these algebraic equations was either regarded 

as a black box or obtained by a standard solver, the solutions with a reference value and geometric 

significance cannot be fully provided. 2) Due to the complexity of concrete curves and curved surfaces 

in engineering, research on the computation of the Hausdorff distance between continuous curves or 

curved surfaces and the minimum Hausdorff distance under a certain transformation is still in its 

infancy. At the same time the lack of relevant solution methods significantly hinders its extensive 

application in the engineering field. 

In this study, a mathematical programming model for computing the minimum one-sided Hausdorff 

distance between plane curves under a similarity transformation was constructed based on a previous 

study
[17]

 by supplementing the scale transformation parameters of approximation objects. A solution 

strategy composed of two-stage (rough and accurate) computation was proposed for this model. 

Moreover, a local iterative accurate algorithm for computing the minimum one-sided Hausdorff 

distance for continuous curves was also constructed. On that basis, a roundness error evaluation 

programming model, based on the minimum one-sided Hausdorff distance, was established and then 

verified numerically. 

II.​ COMPUTATION OF THE MINIMUM ONE-SIDED HAUSDORFF DISTANCE BETWEEN 
PLANE CURVES UNDER A SIMILARITY TRANSFORMATION 

2.1   Mathematical Programming Model 

It can be inferred from the definition of the one-sided Hausdorff distance that the computation of 

 involves the shortest distance from a point  on Curve A to Curve B. As per geometric error 

evaluation theory and curve/curved surface approximation theory, this shortest distance is generally 

called an error. When Curve B is allowed to undergo a similarity transformation, its position and scale 

Computation of the Minimum One-Sided Hausdorff Distance between Plane Curves under a Similarity Transformation and Relevant
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are transformed. The change in the parameter of the point on Curve B corresponding to the shortest 

distance from a point on Curve A to Curve B is termed parameter transformation. When the shortest 

distance from Point  to the transformed Curve B is also transformed, it is termed error 

transformation. Therefore, the computation of  under a similarity transformation incorporates 

position, scale, parameter, and error transformations. 

The representation of Curve  under a similarity transformation is subsequently discussed. The 

similarity transformation of the given plane curve  includes three motions; namely translation, 

rotation, and scaling. The following homogeneous coordinates can be used to represent the translation 

matrix, rotation matrix, and scaling matrix, respectively, including 

 

    

    (1) 

where,  represents the translation coordinates along the X and Y axes; represents the rotation 

angle;  represents the scaling rations in the X and Y directions; To maintain the shape of the 

graph unchanged before and after scaling, equal scaling would be adopted in the following discussion, 

namely . These parameters  are collectively called the similarity transformation 

parameter .  

After the above three motions, the expression of Curve  can be obtained as: 

 

​ ​

(2) 

where,  denotes the coordinates of Curve B in Frame ; they are all functions of the curve 

parameter . 

From the perspective of the BUA of curves or curved surfaces, the one-sided Hausdorff distance 

between two geometric objects is the maximum deviation of the approximation object from the 

approximation target. Minimising the maximum deviation under some transformation is the 

optimisation objective of the BUA. The process of minimising the maximum deviation is characterised 

by saddle points and can therefore be explored by saddle point programming. Under a similarity 

transformation, if the scale and position parameters of the approximation object are taken as 

optimisation variables and the one-sided Hausdorff distance from the approximation object to the 

approximation target is minimised as the optimisation objective, the definition of the minimum 

one-sided Hausdorff distance can be expressed as the following mathematical programming form: 

​ ​ ​          
​ ​ ​

   (3) 
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The first line in Equation (3) represents the objective function of the optimisation model and  is the 

characteristic parameter. The second line represents the optimisation model constraint function; 

namely that the characteristic parameter  shall be the one-sided Hausdorff distance between two 

curves under a certain set of transformation parameters .  

represents the Euclidean distance between Point a on Curve A and Point b on Curve B under the 

transformation parameter X. 

The constraint function in the above model is the one-sided Hausdorff distance between two curves 

under the transformation parameter . According to the definition of the one-sided Hausdorff 

distance between continuous curves in a previous study
[16]

, it can be found that a pair of points 

satisfying the one-sided Hausdorff distance is the point pair satisfying the maximisation of the 

minimum distance and it also has the saddle point characteristics. Moreover, a saddle point 

programming model for the Hausdorff distance computation between two curves can be established if 

the curve parameters  and  of two curves are taken as optimisation variables and the minimum 

distance from a point on one curve to the other is taken as the optimisation objective. In other words, 

the computation of the minimum one-sided Hausdorff distance is an optimisation in Type 

. To simplify the optimisation process, Curve A would be discretised to complete the 

computation of the shortest distance from each discrete point on Curve A to Curve B. On that basis, the 

following mathematical programming model can be constructed to obtain the solution to the minimum 

one-sided Hausdorff distance: 

Following the discretisation of Curve A, the programming model given by Equation (3) can be 

expressed as: 

 ​    ​ ​ ​ ​
   (4) 

 

Fig. 1: Planar Curves under Similarity Transformation 

where,  represents the shortest distance from the discrete point  on Curve A to 

the transformed curve , as presented in Figure 1. This can be computed according to the 

shortest distance algorithm from the point to the curve in a previous study
[16]

;
 

represents the 

curve parameter corresponding to the minimum normal distance mapping point of the discrete point 

 on Curve ;  represents the discrete point serial numbers, and  represents the total 

number of discrete points on Curve A.  represents a similarity transformation 

parameter, and  represents the optimisation variables of the saddle point 

programming model. 
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2.2   Linearisation Solution to the Mathematical Programming Model 

It can be seen from the above optimisation model that the nonlinear part of the optimisation variable is 

included in the shortest distance . If the shortest distance in Equation (4) is regarded as a function 

of the transformation parameter , it can be expressed as follows: 

   (5) 

If the transformation parameter  is regarded as a first-order small quantity, it is called a small 

error. After  in Equation (5) is subject to Taylor's expansion at the zero point  

of transformation parameters and their second-order and higher-order small quantities are omitted, 

the following expression can be obtained: 

​ ​ ​ ​ ​
   (6) 

In the equation, 

​ ​ ​ ​​ ​​ ​ ​ ​
​

   (7) 

​
​ ​ ​ ​

   (8) 

​ ​ ​ ​

       (9) 

​
(10) 

​
(11) 

where,  represents the shortest distance from a point  on Curve A to Curve B before a 

similarity transformation; 
, , ,  

and 
 

represent the first-order increment of the 

transformation parameter
 ;  

represents the coordinates of the point on Curve B; 

 represents the coordinates of the unit normal vector at a point on Curve B;  

It can be revealed from Equations (2) and (3) that the optimisation model constraint function given in 

Equation (4) is not a linear combination of optimisation variables, but a nonlinear optimisation which 

needs to be linearised. 

represents the first-order partial derivatives of Equation (2) for the transformation parameter 
. 
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(12)    

              

where,  represents the characteristic parameter, that is, the one-sided Hausdorff distance from curve 

A to curve B; ; and   represents the number of discrete points on the actual curve. 

The above optimisation model has the variable . However, are all free variables 

without non-negative requirements. To achieve the solutions by the simplex linear programming 

method, it can be arranged that  and . Then, the slack 

variable ( ) is introduced and the inequality constraint is transformed into an equality 

constraint, finally an initial basic feasible solution can be obtained. Hence, the above linear 

programming problem can be expressed in the following standard form: 

​ ​ ​ ​ ​ ​
      (13) 

where, ,  represents a dimensional column vector of , 

 represents a matrix of , and  represents an m-order unit matrix; 

, , and  represent m-dimensional column vectors, and  

represents a 4-dimensional column vector; The upper corner mark T represents the matrix 

transposition. 

 

After the above model is solved by the simplex linear programming method, the characteristic 

parameter  and the similarity transformation parameter  of Curve B can be obtained. 

The value of the characteristic parameter can be considered as the minimum one-sided Hausdorff 

distance from curve A to curve B. 

To reduce any error caused by the linear geometric model, curve B can be rotated, translated, and 

scaled, using the computation result of . The transformed curve can be regarded as a 

new curve and the above process can be repeated until the absolute value of the transformation 

parameters obtained from the computation of Equation (12) is less than the given precision. 

After Equations (6) - (11) are substituted into Equation (4), the following linear programming model for 

computing the minimum one-sided Hausdorff distance between plane curves can be obtained:
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Under the similarity transformation, one of the two curves (e.g., Curve B) can usually be translated, 

rotated, and scaled, so there are four degrees of freedom in Curve B. Therefore, when  reaches 

its minimum, the equidistant line of Curve B has at least 5 points of tangency to Curve A, as shown in 

Figure 2. Under this condition, due to the continuous changes in the Curve B scale parameter , when 

 reaches the minimum, both the symmetric equidistant curves  and  of Curve B have 

points of tangency to Curve A. In other words, Curve A is bidirectionally enclosed by the inner and 

outer equidistant lines of Curve B and the maximum and minimum normal errors of Curve A relative to 

Curve B are equal in value and opposite in sign. The distribution ratio of the tangency points for the 

inner and outer equidistant curves  and  to Curve A can be 1:4 (4:1) or 2:3 (3:2). 

 

Fig. 2: Minimum one-sided HD from curve A to curve B where curve A is fixed and curve B subjects to 

the similarity transformation 

2.3  Precise Iterative Model 

The mathematical programming model in the previous section can be utilised to compute the minimum 

one-sided Hausdorff distance from discretised curve A to curve B. When the curve is originally 

provided in the form of discrete points, for example, when the curve is a data point obtained by 

measurement or the computational precision is not high, this method can meet the relevant 

requirements. However, when Curves A and B are presented as continuous curves, in order to obtain 

the precise minimum one-sided Hausdorff distance between both curves, it is necessary to conduct 

local iterative optimisations based on the previous section. Finally, the precise minimum one-sided 

Hausdorff distance from curve A to curve B can be obtained. 

The approximate solution which satisfies the optimal condition can be obtained via the algorithm in the 

previous section. There are 5 characteristic points on discretised Curve A which are optimally arranged 

with the inner and outer equidistant lines of Curve B. It is necessary to construct a local iterative 

optimisation model, so that the parameters of Curves A and B, corresponding to 5 equivalent 

characteristic points, can meet the requirements of the one-sided Hausdorff distance. 

As the local optimisation model contains 4 similarity transformation parameters and 10 curve 

parameters corresponding to 5 characteristic points, with a total of 14 optimisation variables, it can be 

considered a complex nonlinear problem. If these parameters can be solved together iteratively， the 

solution process is prone to oscillation, which may induce convergence failure in the computation. To 

reduce the computational difficulty and ensure computational stability, the precise iterative model is 

iteratively solved using two steps (similarity transformation parameters and curve parameters). 
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2.3.1   Similarity Transformation Parameter Iterative Solution  

There are 5 initial points  on Curve A and the mapping points  with the 

shortest distance of  on Curve B can be obtained by the algorithm of the shortest distance from 

points to curves. After the position of Point  is fixed, the distance between corresponding  

can be equalised by changing the position, direction, and scale of Curve B. Therefore, the conditional 

expression can be provided: 

​ ​ ​ ​ ​ ​ ​ ​

（14） 

where, the position of Point  is related to the similarity transformation parameter of Curve B and 

its curve parameter . Since Point  is the normal mapping point with the shortest distance of  

on Curve B, its curve parameter is not independent, so . Hence, Equation (14) can be 

expressed as： 

​ ​ ​ ​ ​ ​ ​ ​

（15） 

After Equation (15) is subject to Taylor's expansion near the initial point and the small quantity above 

the second order is omitted, the following expression can be obtained: 

​ ​ ​ ​ ​

 （16） 

where,  represents the function value of Function  at the initial point; 

 represents the first-order partial derivative of Function  with respect to 

, respectively. Equation (16) can be represented in a matrix form and the following expression 

can be obtained: 

​ ​ ​ ​ ​

（17） 
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The linear equations (17) can be solved to obtain the increments  of similarity 

transformation parameters and these increments can be employed to update the Curve B similarity 

transformation parameters. Furthermore, the iterative process can be repeated until each similarity 

transformation parameter increment is smaller than the given computation precision . 

2.3.2   Iterative Solution of Curve Parameters 

When the minimum one-sided Hausdorff distance from curve A to curve B is achieved, the optimality 

condition and the one-sided Hausdorff distance condition are satisfied. The previous similarity 

transformation parameter iterative process ensured that the optimality conditions were satisfied. The 

condition satisfying the one-sided Hausdorff distance is discussed in this section. As reported in a 

previous study
[16]

, the one-sided Hausdorff distance between plane curves is generally presented in four 

cases; double perpendicular foot points, one-to-two points, EA endpoints, and EB endpoints. Different 

constraint equations exist for different cases. The corresponding constraint equations are established 

according to the different situations of the 5 points on the actual Curve A before the iterative solution is 

performed. In this study, the one-sided Hausdorff distance between plane curves under the 

perpendicular foot point is selected as the example, and its corresponding conditions are: 

​ ​ ​​ ​ ​ ​ ​ （18） 

​ ​ ​ ​ ​ （19） 

Since the conditions of Equation (18) would definitely be satisfied, it is only necessary to locally 

optimise the parameters of Curve A at the characteristic point. After the Curve B similarity 

transformation parameters and the corresponding parameters  of characteristic points 

on Curve B are set as initial points, the parameters of Curve A are the only undetermined variables in 

Equation (19). Hence, Equation (19) can be expressed as： 

​ ​ ​ ​ ​ ​ ​   (20) 

where,  represents the curve parameter corresponding to the 5 characteristic points on 

Curve A. 

Since the solution of Equation (20) is performed based on the previous programming algorithm and 

has a favourable initial point, the curve parameter increments  corresponding to the 5 

characteristic points on Curve A can be directly obtained by the efficient univariate Newton's iterative 

method. On that basis, each Curve A parameter can be updated and the iterative process can be 

repeated until the parameter increment is smaller than the given computation precision . 

Due to the interaction between the iterative solution of the similarity transformation parameters and 

that of the curve parameters, it is necessary to conduct these two iterative processes alternately until 

the convergence conditions of the two iterative processes satisfy the requirements. 

1.3 Numerical examples 

The feasibility of the above algorithm is verified via numerical examples in this section. The original A 

and B curves are closed curves represented by the cubic uniform B spline, incorporating 90 control 

points. As shown in Figure 3, the red line represents Curve A and the blue line represents Curve B. 

Curve A is presented as an outline of a Liriodendron chinense leaf. The Curve B control points are 
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obtained by superimposing an error function with a 2mm amplitude on 90 Curve A control points. 

Furthermore, the Curve B is transformed according to the following similarity transformation 

parameters: =15mm, =15mm, =20°, and =1.2. 

 

Fig. 3: The Original Curves A and B 

The minimum one-sided Hausdorff distance  from Curve A to Curve B can be calculated using 

the following process. Firstly, Curve A is discretised according to its parameters and Curve B is 

transformed from a B-spline form to a cubic piecewise Bezier curve through the algorithm in a previous 

study
[18]

. Subsequently, the shortest distance from each discrete point on Curve A to Curve B is 

computed through the algorithm in a previous study
[16]

, which can be regarded as the original normal 

error  of Curve A relative to Curve B. The linear programming algorithm in Section 1.1 is then 

employed to compute the minimum one-sided Hausdorff distance from curve A to curve B under a 

similarity transformation. Subsequently, the corresponding transformation parameters, minimum 

one-sided Hausdorff distance , and corresponding characteristic point coordinates can be 

obtained. The computation precision is 10
-10

 and the results are presented in Figure 4. The 5 pairs of 

blue points represent the corresponding characteristic points obtained by the mathematical 

programming method, and =2.899780. The corresponding transformation parameters 

include =16.488852mm, =15.939305mm, =19.803339°, and =1.1960891. Based on 

the programming model computation results,  can be solved precisely based on the local 

optimisation model in Section 1.2. The final characteristic points are presented as 5 pairs of red points 

in Figure 4, and =2.914359mm, which is highly similar to the mathematical programming 

method results. The corresponding transformation parameters include =0.008716mm, 

=0.001226mm, =0.007190°, and =1.000028. 
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Fig. 4: Refinement of the Characteristic Points by using the Local Optimization Approaches 

III.​ ROUNDNESS ERROR EVALUATION BASED ON THE MINIMUM ONE-SIDED 
HAUSDORFF DISTANCE 

2.1 Introduction 

In addition to being applied to the aforementioned pattern recognition and curve matching, the 

mathematical programming model based on the minimum one-sided Hausdorff distance can also be 

used in the geometric error evaluation. The relevant geometric error evaluation model is simpler and 

improves computational efficiency. 

As the most common fits, cylindrical fits are reported to account for 80-85% of engineering 

applications. The measurement and evaluation of cylindrical parts are important technical approaches 

to ensure part precision. Currently, roundness errors are often evaluated using the minimum 

circumcircle, maximum incircle, least squares, and minimum area methods
[19]

. Among them, the 

minimum area method obtains the smallest unique evaluation results, which is consistent with the 

roundness error definition in ANSI
[20]

, ISO
[21]

, and national standards
[22]

. As per the minimum area 

evaluation method definition, two ideal concentric circles are used to contain the actual measured 

elements and the minimum width of the containment domain can be used to represent the roundness 

error. In the above evaluation process, the centre position and radius of the ideal circle can be changed. 

The principle for evaluating the roundness error with the minimum area method is that when the 

measured contour is contained by two concentric circles, at least four measured points are distributed 

inside and outside of two concentric circles. Since the specific algorithm used to obtain the minimum 

roundness error is not specified in any of the above standards
[20-22]

, some researchers have proposed 
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geometric error evaluation models and algorithms since the publication of these standards. In some 

existing studies
[23-25]

 the roundness error evaluation is regarded as a double inclusion evaluation 

according to the criteria of the minimum area evaluation method. In other words, there are two ideal 

elements that contain the actual measured elements. Based on that, the following programming 

algorithm can be constructed; 

​ ​ ​ ​ ​

  (21) 

where,  represents the coordinates of a measurement point and  represents the number of 

measurement points;  represents the centre of an ideal circle;  represents the radius 

of the maximum and minimum containment circles. If  is arranged,  

represents the radius of an ideal circle and  represents the maximum and minimum normal 

errors. On that basis, the model from Equation (21) can be transformed into the saddle point 

programming model provided by a previous study
[19]

,  

​ ​ ​ ​ ​

​
  ​

 (22) 

where,  respectively represent the maximum and minimum normal errors from the point on the 

actual measured element to the ideal element. 

The roundness error evaluation model based on the minimum one-sided Hausdorff distance is 

explored in the following section. Finally, the computation precision and efficiency are compared with 

those in Equations (21) and (22) using numerical examples. 

2.2  Roundness Error Evaluation Programming Model Based on the Minimum One-Sided Hausdorff 
Distance 

If the measured actual contour is presented as Curve  and the ideal element is presented as Curve 

, the one-sided Hausdorff distance  from Curve  to Curve  represents the maximum 

deviation from Curve  to Curve . During the roundness error evaluation, the centre position and 

radius of the ideal element  can be changed and the relevant vector equation can be expressed as: 

​ ​ ​ ​ ​​ ​ ​
  (23) 

where,  represents the transformation parameter vector and its components represent 

the circle centre coordinates and radius of the ideal element . 
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From the perspective of the BUA, the one-sided Hausdorff distance between two geometric objects is 

the maximum deviation of the approximation object from the approximation target. The optimisation 

objective of the BUA is to minimise the maximum deviation under a transformation. If the 

approximation object scale and position parameters are selected as optimisation variables and the 

minimum one-sided Hausdorff distance from the approximate object to the approximation target is 

selected as the optimisation objective, the following roundness error evaluation programming model 

can be obtained after Curve  is discretised: 

​ ​ ​ ​ ​
  (24) 

where,  represents the shortest distance from the discrete point  on Curve A to 

the ideal circle  after transformation;  represents the curve parameter corresponding 

to the minimum normal distance mapping mapping point of the discrete point  on the ideal circle 

;  represents the discrete point serial number, and  represents the total number of discrete 

points on Curve A.  represents the similarity transformation parameter and 

 represents the programming model optimisation variables.  

It can be revealed that the optimisation model constraint function given in Equation (24) is not a linear 

combination of optimisation variables, but a nonlinear optimisation which needs to be linearised. 

2.3 Linear Solution Method 

It can be seen from the above optimisation model that the nonlinear part of the optimisation variable is 

included in the shortest distance . If the shortest distance in Equation (24) is regarded as a function 

of the transformation parameter , it can be expressed as follows: 

  (25) 

If the distance function  is subject to Taylor's expansion at the transformation parameter 

zero point  and their second-order and higher-order small quantities are omitted, the 

following expression can be obtained; 

​ ​ ​ ​ ​ ​ ​
  (26) 

In the equation, 

​ ​ ​ ​ ​​ ​ ​ ​   (27) 

​
​ ​ ​ ​

  (28) 
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​ ​ ​ ​ ​

  (29) 

​ ​
 (30) 

where,  represents the shortest distance from a point  on Curve  to the ideal circle  

before the transformation;  represents the first-order increment of the transformation 

parameter  at the zero point ;  represents the coordinates of the unit 

normal vector at a point on the ideal curve;  represents the first-order partial derivative of 

Equation (23) for the transformation parameter . 

After Equations (26) - (30) are substituted into Equation (24), the following linear programming model 

to compute the minimum one-sided Hausdorff distance between plane curves can be obtained: 

​ ​ ​ ​ ​ ​

 (31) 

where,  represents the characteristic parameter, namely the one-sided Hausdorff distance from 

Curve  to Curve  and  represents the number of discrete points on the actual curve. 

2.4 Optimal Conditions for the Minimum Hausdorff Distance 

In terms of the programming model given in Equation (24), the conditions that should be satisfied at 

the optimal solution point are called optimality conditions. According to the optimisation theory
[26-27]

, 

the optimality condition in nonlinear programming is the K-T condition. If  is the model local 

optimal solution, it is required to have the following K-T condition; 

​ ​
​ ​ ​ ​

  (32) 

where,  is termed a tight constraint index set and the constraint               

( ) corresponding to the element ( ) in the set is termed a tight constraint. 

The following expressions can be obtained from Equation (31); 

​ ​ ​ ​ ​ ​ ​ ​
  (33) 

​ ​ ​ ​ ​ ​
  (34) 

After Equations (33) and (34) are substituted into the K-T condition equation (32), it can be seen that: 
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​ ​ ​ ​ ​ ​​ ​ ​ ​

（35.a.b.c） 

where,  represents the vector corresponding to the tight constraint; 

. 

It is evident from previous analysis that if the characteristic point falls on the outer containment circle 

, it can be taken that ; If the characteristic point falls into the inner containment circle 

, it can be taken that . When  ( ), it can be found from Equation (35.c) 

that the 4 characteristic points cannot completely fall on the outer containment circle  or the inner 

containment circle . This indicates that there is no characteristic point with a distribution ratio of 

0:4 (4:0). 

In a situation where the characteristic points’ distribution ratio is 1:3 (3:1), it is safe to assume that the 

first characteristic point is on  and the other three characteristic points are on . It can be 

obtained from Equations (35.a) and (35.c) that: 

​ ​ ​ ​ ​ ​

                        (36)                  

When Equation (36) is substituted into Equation (35.b), it can be taken that: 

​ ​ ​ ​ ​

                      (37) 

The geometric meaning of the above equation is that the convex combination of characteristic points 2, 

3, and 4 shall contain the vector  corresponding to the characteristic point 1. Since the 4 

characteristic points are distinct tight constraint points, the case represented by Equation (37) cannot 

exist, specifically that there is no characteristic point with a distribution ratio of 1:3 (3:1). 

Consequently, the characteristic points distribution ratio of the roundness error, evaluated by the 

minimum area method on the inner and outer containment circles  and , can only be 2:2. 

Accordingly, the 1st and 2nd characteristic points can be arranged on  and the other 2 

characteristic points can be arranged on . It can be deduced from Equation (35.b) that: 

​ ​ ​ ​ ​ ​ ​ ​

        (38)          

Under this circumstance, it can be taken that 

​ ​ ​ ​
​ ​ ​ ​            ​

  (39) 

As suggested in Equation (39), when the roundness error evaluation results are optimal, the 

characteristic points on the inner and outer containment circles  and  are distributed as 
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The K-T condition provides the necessary conditions for the optimal constrained nonlinear 

optimisation solution. When the optimisation objective and constraint function in the optimisation 

model are convex functions, the locally optimal solution is the global optimal solution. According to the 

optimisation theory
[26-27]

, linear programming belongs to convex programming. Meanwhile, the linear 

programming model can guarantee higher precision under the assumption of small errors. Hence, the 

minimum condition given in Equation (35) can be regarded as a necessary and sufficient condition for 

reaching the global minimum. 

2.5   Numerical Examples 

Numerical example 1 

The measured data is quoted from a previous study
[28]

, as presented in Table 1. The roundness errors in 

the study are as follows: The centre coordinates and the radius of the ideal circle would be 

mm and the roundness error is 29.2816 μm. Based on the 

data in Table 1, the conventional roundness error model (Equation 21) and the Hausdorff 

distance-based model (Equation 31) are compared in terms of their computation precision and 

efficiency. 

The average value of the coordinates of 25 data points listed in Table 1 is selected as the initial circle 

centre coordinates . The average distance from each measurement point to the initial circle 

centre coordinates is selected as the initial radius of the ideal circle . A computer with a Pentium IV 

processor with a frequency of 2.8GHz and a 256MB memory is adopted during this process. Based on 

the model in Section 1.1, when the computation precision  is , the centre coordinates and the 

radius of the ideal circle can be obtained as mm. 

The minimum one-sided Hausdorff distance is 14.640087μm, the roundness error is 

29.280175μm, the high characteristic points are the 11th and 18th points, and the low characteristic 

points are the 6th and 13th points. The average time for ten computations is 0.32ms. The results (circle 

centre coordinates, roundness errors, and characteristic points) from the model given in Equation (21) 

are similar to those computed by the model based on the minimum one-sided Hausdorff distance in 

Section 1.1. The radii of the maximum and minimum containment circles are 30.014702620mm and 

29.985422445mm, respectively, but the average time for ten computations based on the latter is 

1.73ms, which is about 5.4 times that based on the former. 
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intersecting lines, which is consistent with the roundness error evaluation criteria in the minimum area 

method. 



Tab. 1: Initial data of Example 1 

Serial number of 

measure points 

X-coordinate 

/mm 
Y-coordinate/mm 

1 70.0150 50.0000 

2 68.7900 58.4734 

3 65.4060 65.9372 

4 59.5675 72.7493 

5 51.3791 77.7452 

6 44.7944 79.6013 

7 40.8903 79.9958 

8 32.0312 78.9306 

9 27.2296 77.1385 

10 20.3993 72.7076 

11 16.1556 68.2304 

12 12.7184 62.4905 

13 10.6380 56.0806 

14 10.0183 49.2149 

15 11.4275 40.8264 

16 14.1050 34.8682 

17 18.8168 28.7427 

18 24.6321 24.2200 

19 31.6833 21.1862 

20 39.1626 20.0207 

21 45.5204 20.5021 

22 55.3996 24.2692 

23 62.3561 30.0114 

24 67.3540 37.6492 

25 69.6190 45.2028 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Numerical Example 2 

The measured data is quoted from a previous study
[25]

, as listed in Table 2. The computed results based 

on the steepest descent algorithm in that study are presented as follows: The ideal circle centre 

coordinates would be mm and the roundness error is 38.231μm. 

The initial centre coordinates and the radius of the ideal circle are constructed via the same method as 

Example 1. When the computation precision  is , the centre coordinates and radius of the ideal 

circle computed based on the minimum one-sided Hausdorff distance model would be 

mm, the minimum one-sided Hausdorff distance is 

19.115472m, and the roundness error is 38.230944μm. The 8th and 20th points are the high 

characteristic points and the 1st and 16th points are the low characteristic points. The average time for 

ten computations is 0.28ms. The results (circle centre coordinates, roundness errors, and characteristic 

points) computed by the model given in Equation (21) are similar to those computed by the model 

based on the minimum one-sided Hausdorff distance. The radii of the maximum and minimum 

containment circles are 30.048841860mm and 30.010610916mm, respectively, but the average time 

for ten computations based on the latter is 1.64ms, which is about 5.9 times that based on the former. 
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Tab. 2: Initial Data of Example 2 

Serial number of 

measure points 

X-coordinate 

/mm 
Y-coordinate /mm 

1 107.5811 114.2119 

2 102.2909 119.9906 

3 95.6848 124.2034 

4 88.2128 126.5634 

5 80.3826 126.9159 

6 72.7251 125.2311 

7 65.7612 121.6196 

8 59.9721 116.3233 

9 55.7576 109.7039 

10 53.4073 102.2180 

11 53.0774 94.3816 

12 54.7849 86.7302 

13 58.4107 79.7824 

14 63.7075 74.0083 

15 70.3176 69.8019 

16 77.7899 67.4519 

17 85.6152 67.1081 

18 93.2669 68.7926 

19 100.2245 72.4009 

20 106.0093 77.6929 

21 110.2199 84.3073 

22 112.5676 91.7864 

23 112.8977 99.6156 

24 111.2129 107.2695 

 

IV. CONCLUSION 

1. In this study, a two-stage (rough and accurate) computation strategy was proposed to achieve the 

accurate computation of the minimum one-sided Hausdorff distance between continuous plane 

curves under a similarity transformation. A programming model for computing the minimum 

one-sided Hausdorff distance was developed for when the curve is provided in the form of 

measurement points or extremely high computation precision is not required. In addition, a 

programming model linearisation method was also formulated and a stable and efficient simplex 

method
[26]

 was adopted to obtain solutions. Under the conditions of continuous curves with the 

requirement to precisely solve the minimum one-sided Hausdorff distance, a local iterative 

precision algorithm, based on the programming algorithm, was established to separate the 

similarity transformation parameters from the curve parameters corresponding to characteristic 

points. Subsequently, the minimum one-sided Hausdorff distance between continuous plane curves 

can be accurately computed. 

2. The geometrical meaning of the one-sided Hausdorff distance between plane curves and the 

minimum one-sided Hausdorff distance under a similarity transformation was explored. The 

geometrical denotation  is that curve A is contained by two symmetrical equidistant curves 

of curve B. When the inner and outer symmetrical equidistant curves completely contain curve A 

with the narrowest width, half of the width value is called the one-sided Hausdorff distance from 

curve A to curve B. Under a similarity transformation, the geometric meaning  is that 

when the width of the symmetric containment domain of curve B reaches the minimum, there are 

at least 5 tangency points between curve A and the inner and outer symmetric equidistant curves of 
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Curve B. The tangency points distribution ratio on the two equidistant curves can be 1:4 (4:1) or 2:3 

(3:2). The maximum and minimum normal errors of curve A relative to curve B are equal in value 

and opposite in sign. 

3. A mathematical programming model based on the minimum one-sided Hausdorff distance was 

applied to roundness error evaluation. Based on the local optimum condition (the K-T condition) of 

constrained optimisation in optimisation theory, it can be demonstrated that the minimum 

condition of one-sided Hausdorff distance from the actual curve to the ideal circle is equivalent to 

the roundness error evaluation criteria in the minimum area method specified in international and 

national standards. Compared with the conventional roundness error evaluation model based on 

the minimum area method, the optimisation objective function is the radius difference between the 

maximum and minimum containment circles and the number of constraint functions in the model 

based on the minimum one-sided Hausdorff distance is only half that in the conventional model. 

Therefore, the model constructed in this study can significantly improve the roundness error 

evaluation efficiency. Furthermore, this method can also be applied to the evaluation of other 

geometric errors by the minimum area method. 
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