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ABSTRACT

Pirate attacks pose one of the most severe
challenges to the safety of maritime navigation.
Effectively quantifying the risk of pirate attacks
and understanding their spatial distribution
through historical records is crucial for planning
safe shipping routes. Given the diverse data types
and multiple factors involved in assessing pirate
attacks recorded in the Global Integrated
Shipping Information System (GISIS) database,
we propose a spatiotemporal influence factor
analysis model based on the K-means clustering
algorithm. Features are encoded using an
Autoencoder, and the evaluation is conducted
using the Entropy Weight Method- Technique for
Order Preference by Similarity to Ideal Solution
(EWM-TOPSIS). The model then simulates and
predicts the geographical distribution of pirate
risks. The results indicate that the model
effectively captures the geographical distribution
patterns of pirate attack incidents and
successfully predicts the risk distribution across
different sea areas. This approach aids in ship
route planning and reduces the risk of pirate
attacks.
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[ INTRODUCTION

Maritime transportation plays a pivotal role in the
development of the global supply chain.
According to the International Maritime
Organization (IMO), nearly 90% of the world’s
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trade is conducted by sea [1]. However, the
increasing frequency of pirate attacks has become
a significant challenge for the maritime industry
and one of the most serious and unsettling issues
facing the international community [2][3]. Thus,
effectively assessing the risk of pirate attacks and
predicting the geographical distribution of piracy
risk to aid in route planning for ships has become
a critical task.

Current research on pirate attacks primarily
focuses on three areas: descriptive statistical
analysis, analysis of influencing factors, and risk
assessment of pirate attacks. In terms of
descriptive statistical analysis, Nwalozie analyzed
contemporary piracy in Nigeria, the Niger Delta,
and the Gulf of Guinea [4]. Denton et al.
conducted a statistical analysis of piracy activities
in the Gulf of Guinea, showing that stronger and
democratic regimes are less likely to encounter
piracy [5]. Regan used nonprobability sampling to
analyze piracy cases between 1985 and 2018 in 11
countries, based on data from various
organizations. Key predictors of piracy frequency
were total country population, total fish tonnage,
gross domestic product, and government
weakness [6].

For analyzing the influencing factors of pirate
attacks, Bayesian networks are commonly used
for risk assessment and prediction. Jiang et al.
utilized a Bayesian network to estimate the
likelihood of ships being attacked or hijacked in
Southeast Asia, considering the uncertainty of
influencing factors [7]. Fan et al. proposed a
two-stage technique for order of preference by
similarity to an ideal solution (TOPSIS) model
based on the Bayesian network. In the first stage,
a data-driven Bayesian network identifies causal
relationships influencing pirate behaviors. The
second stage involves -calculating a decision
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matrix of strategies using TOPSIS, enhancing the
strength of risk prediction and dynamic diagnosis
by the Bayesian network [8]. Dabrowski et al.
presented a novel generative model based on
dynamic Bayesian networks (DBN) to simulate
maritime vessel behavior, especially in piracy
scenarios, allowing for the evaluation and
optimization of behavior models through
synthetic data generation and analysis [9].

Regarding the risk assessment of pirate attacks,
Gong et al. proposed a two-step analytical
framework based on a Random Forest (RF)
model, Generative Adversarial Nets (GANs), and
Matrix Completion (MC) algorithm to assess the
risks of successful piracy attacks [10]. Vanék et al.
developed AGENTC, a data-driven agent-based
simulation model of maritime traffic that
explicitly = models  pirate  activity = and
countermeasures. This model simulates the
behavior and interactions of thousands of vessels,
capturing the complex dynamics of the maritime
transportation system under piracy threat and
assessing various countermeasures [11]. Jin et al.
used data on piracy attacks between 1994 and
2017 to estimate the probability of a vessel being
attacked and the success rate of these attacks.
Their binary logistic regression model showed
that smaller vessels and open registry vessels are
more likely to be targeted by pirates [12]. Pristrom
et al. proposed a flexible model for assessing
piracy and robbery risks in merchant ship
operations, analyzing incidents based on major
influencing factors such as ship characteristics
and geographical locations. An analytical model
incorporating Bayesian reasoning was proposed to
estimate the likelihood of a ship being hijacked in
the Western Indian or Eastern African regions

[13].

In summary, current research rarely integrates
the spatiotemporal characteristics of pirate
attacks, evaluates and analyzes risks, and predicts
the geographical distribution of piracy risk. This
paper addresses this gap by proposing a novel risk
assessment algorithm for pirate attacks that
considers spatiotemporal characteristics. Using
K-means clustering, Autoencoder, and the
Entropy  Weight Method-TOPSIS (EWM-
TOPSIS), this algorithm can simulate and predict

the geographical distribution of piracy risk,
providing crucial information for ship route
planning and significantly reducing the risk of
pirate attacks.

Il.  MATERIALS AND METHODS

This research begins by extracting pirate attack
data from the Global Integrated Shipping
Information System (GISIS) database. Using the
K-means clustering algorithm, we delineate zones
and construct external competition factors,
internal attraction factors, quantity factors, and
temporal factors. Based on these four related
factors, we derive the geographical probability
factor. Subsequently, we apply an Autoencoder to
encode the features of the four risk impact
indicators:  geographical probability factor,
number of pirates, weapon equipment score, and
loss score. Finally, we use the EWM-TOPSIS
method to conduct a comprehensive risk
assessment and employ the nearest neighbor
interpolation method to obtain the simulated and
predicted distribution of pirate attack risks across
different sea areas. The specific methodology and
process flow are illustrated in Figure 1.
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Figure 1: Algorithm flow structure chart

2.1 Analysis of Risk Influencing Factors in Pirate
Attack Incidents

The risk of pirate attacks is influenced by several
critical factors, including Geographical Probability
Factor of Pirate Attacks, Number of Pirates,
Weapons, and Losses Caused by the Attacks.

211 Geographical Probability Factor of Pirate
Attacks

Hotspot areas typically indicate a higher density
of pirate activities in a specific region during a
particular time period, thereby significantly
increasing the potential risk of ships encountering
pirate attacks in these regions. Additionally,
within the same maritime area, multiple types of
pirate groups may exist, which can sometimes
engage in conflicts or collusion with one another
[14]. Therefore, this research constructs a
geographical probability factor of pirate attacks to
comprehensively quantify these influencing
factors.

2.1.2 Number of Pirates

The number of pirates is a crucial factor in
assessing the risk of pirate attacks. A larger

number of pirates makes it more challenging for
ships to effectively defend against attacks, thereby
increasing the overall risk. This research
incorporates the number of pirates as one of the
quantifiable factors in evaluating the risk of pirate
attacks, aiming to enhance the accuracy and
comprehensiveness of the risk assessment.

213 Weapons

The type of weapons used by pirates significantly
impacts the severity of the risk in pirate attack
incidents. Pirates typically employ a variety of
weapons, including boats, knives, firearms, and
rockets. Both the quantity and technological
sophistication of these weapons are critical factors
in risk assessment. Therefore, this research
constructs a weapon equipment score to
comprehensively evaluate the level of pirate
armament, thereby providing a more precise
quantification of the attack risk.

2.14 Losses Caused by Attacks

Pirate attacks can result in various types of losses,
including theft of goods, hostage-taking, and
casualties. The scale of these losses and the
severity of the casualties reflect the increased risk
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level of pirate attacks. This research constructs a
loss score to quantify the extent of damage and
casualties caused by pirate attacks, providing a
more accurate assessment of the risk.

2.2 Quantification of Pirate Attack Risk Indicators
2.2.1 Geographical Probability Factors

The occurrence of pirate attacks is not a matter of
chance. To quantify the probability of pirate
incidents at various geographical locations, this
research introduces the geographical probability
factor.

e C(lustering of Pirate Incident Hotspots Based
on K-means Algorithm

K-means is a common unsupervised machine
learning clustering algorithm aimed at dividing a
dataset into k distinct clusters. Each sample
belongs to one cluster, ensuring high similarity
within the cluster and low similarity between
different clusters [15]. In this research, we use the
latitude and longitude data of pirate attacks as
input to the K-means algorithm to identify regions
with frequent pirate activities. Additionally, to set
a reasonable number of pirate activity centers
within a maritime area, we evaluate the number of
clusters using the Sum of Squared Errors (SSE):

k
SSE=Y(

i=1j

n;

4 (o, =) +(0-y,)’ (1)

Where 1, represents the number of pirate
incidents occurring in the i-th pirate activity

center area. *i and ¥# respectively denote the
longitude and latitude of the j-th pirate incident
point belonging to the i-th pirate activity center

area. % andY represent the longitude and
latitude of the pirate activity center point.

e Calculation of Geographical Probability Factor

Divide the maritime area into M grid points in an
It grid. Using the trained K-means clustering
model, each grid point is assigned to the nearest
pirate activity center region. The closer a grid
point is to a pirate activity center, the more
frequent the pirate activities. Therefore, the
internal attraction factor is derived as follows:

Where & represents the number of grid points

contained in thei-th pirate activity center area; Y

and £ respectively denote the longitude and
latitude of the j-th grid point belonging to the i-th

pirate activity center area; f; represents the
internal attraction factor of the j-th grid point
belonging to the i-th pirate activity center area.

There exists a competitive relationship between
different pirate groups, making pirate incidents
less likely to occur in overlapping areas of
influence between two pirate groups. Therefore,

the calculation formula for the external
competition factor is as follows:
qu i= (3)

]:tl

d, . .
Where *# represents the Euclidean distance from
the i-th pirate activity center point to the j-th

pirate activity center point; ‘' represents the
external competitive factor of thei-th pirate
activity center point. By combining the internal
attraction factor and the external competition
factor, we derive the comprehensive competition

factor:
o S
¢; =exp o 0=
ij

Where & represents the comprehensive
competitive factor of the j-th grid point belonging
to thei-th pirate activity center area.

1/"'k;j:1/"'/a, (4)

If a pirate incident has recently occurred in the
surrounding area of a grid point, it is likely to face
another pirate attack in the near future.

Therefore, this research introduces the quantity

factor N; and the temporal factor 's. The
quantity factor is measured by the total number of
pirate incidents occurring within the four adjacent
grids connected to each grid point for each year
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(as shown in Figure 2). Finally, by combining the
quantity factor and the temporal factor, we derive
the activity factor as follows:

]:1/.../“_

1

E, —ZN"T i=

(5)
! =(1—t)2 “,q=b,,b +1,--,b,

Where & and b, represent the selected starting
and ending years of the pirate attack incidents,

respectively; N represents the quantity factor of
the j-th grid point belonging to the i-th pirate
activity center area in year g; 7, represents the

temporal factor in year q; t represents a time
hyperparameter; £; represents the activity factor
of the j-th grid point belonging to the i-th pirate
activity center area.
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Figure 2: Quantity factor calculation diagram

By combining the comprehensive competition
factor and the activity factor, followed by
normalization, we obtain the geographical
probability factor:

(6)

= ﬂo +ﬂ1”i +ﬂzli +133ui2 +ﬁ4uili
Where  Bo: BBy By Bas B B By Bg By are  the

coefficients of the interpolation function, obtained
by selecting the 8 nearest neighboring grid points
including the target point to be interpolated and
setting up a linear equation system for solution. u

andli respectively represent the longitude and
latitude of the i-th pirate incident location.

P(i=1,2,---,n) represents the  geographical
probability factor of the i-th pirate incident
location.

Where P, represents the geographical probability
factor of the j-th grid point belonging to the i-th
pirate activity center area.

Finally, the Cubic Spline Interpolation algorithm
is used to interpolate the geographical probability
factor for each actual pirate incident location:

+1851i2 +ﬁ6ui3 +ﬂ7uizli +ﬂ8uili2 +ﬂ9li3 (7)

2.22 Number of Pirates

Generally, a higher number of pirates indicates a
greater risk of pirate attacks. Therefore, this paper
uses the number of pirates involved in each
incident as one of the key indicators for assessing
the risk of pirate attacks.

2.2.3. Weapon Equipment Score

Pirates typically use a variety of weapons,
including knives, firearms, boats, and rockets. The
quantity and technological sophistication of these
weapons are critical indicators of the risk posed
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2.2.3. Weapon Equipment Score

Pirates typically use a variety of weapons,
including knives, firearms, boats, and rockets. The
quantity and technological sophistication of these
weapons are critical indicators of the risk posed
by pirate attacks. Using the GISIS database,
processed through natural language processing,
this research extracts relevant descriptions and
quantities of weapons from pirate attack reports.
We then perform quantitative analysis on this
information (as shown in Table 1) and calculate a
weapon equipment score for each pirate attack
based on the quantity and value of the weapon
information:

(8)

W, . .
Where 7 represents the scoring of the j-th
weaponry information for the i-th pirate attack

o . A _
incident location; "% represents the quantity of
the j-th weaponry information for the i-th pirate

attack incident location; Q represents the
Weapon Equipment Score for the i-th pirate
attack incident location.

Table 1: Weapons and Equipment Information
Scores

Weapons and
Equipment Information
Knives
Guns
Boat
Armed
Rocket

Score

A wwN R

2.24. Loss Score

The losses incurred from pirate attacks include
theft of goods, hostage-taking, and casualties. The
extent of these losses is a critical indicator of the
risk associated with pirate attacks. Using the same
method as for calculating the weapon equipment
score, we perform a quantitative analysis of the
loss information from pirate attacks (as shown in
Table 2). We then compute the loss score for each

pirate attack by integrating the quantity and value
of the loss information:

5
L= IijBij'lzlf""n 9

i=1

i, . .
Where * represents the scoring of the j-th loss
information for the i-th pirate attack incident

. B. . .
location; 7 represents the quantity of the j-th
loss information for the i-th pirate attack incident

location; L represents the Loss score for the i-th
pirate attack incident location.

Table 2: Loss Information Score

Loss information Score

Stolen 1
Wounded 2
Hijacked 2
Fired 3
Raft 4

2.3 Feature Encoding Based on Autoencoder

Autoencoder is a type of neural network model
commonly used for feature extraction and data
dimensionality reduction [16]. Compared to
traditional dimensionality reduction algorithms
such as Principal Component Analysis [17] and
Factor Analysis [18], autoencoders can capture
nonlinear data relationships while performing
adaptive feature learning and more -effective
representation learning. Autoencoders consist of
two processes: encoding and decoding. The basic
structure includes an input layer, hidden layers,
and an output layer (as shown in Figure 3), with
the objective of minimizing reconstruction error.
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Figure 3: Autoencoder Structure

The first step is to encode the input layer variables
into hidden layer variables for dimensionality
reduction:

H=0oWX+b,) (10)

Where W,
represents the bias vector;

represents the weight matrix; b
0 represents the

activation function; X represents the input layer

variables; H the hidden layer

variables.

represents
Next, the hidden layer variables are decoded back
to their original form:

X =o(W,H +b,) (11)

Where W represents the weight matrix; £
represents the bias vector; X represents the
output layer variables.

The formula for calculating reconstruction error
is:

X, X =[x~ X“z (12)

24  Evaluation of Comprehensive Risk Factors
Based on EWM-TOPSIS

2.4.1 Weight Calculation Using Entropy Weight
Method (EWM)

The entropy weight method (EWM) is an objective
weighting algorithm based on information
entropy theory [19]. It determines the weights of
each indicator based on their information content,
thereby avoiding the subjective biases present in
subjective weighting methods such as the Analytic
Hierarchy Process (AHP), and improving the
objectivity and authenticity of evaluation results.
The specific steps are as follows.

First, perform indicator normalization. Since the
encoded hidden risk indicators are all of the
"larger-the-better" type, the inherent process is:

p, = py ~min,(1,) i=l-,mj=1-,n (13)
’ maxi(hij)_mini(hij), C o

Where f; represents the j-th hidden risk indicator
of the i-th sample.

Second, calculate the proportion of the i-th
sample value under the j-th hidden risk indicator:
P

;P,—,-

G_, =

; i=1,-

,m,‘j=l,--~,n

(14)
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Third, calculate the entropy value of the j-th
hidden risk indicator:

Ry==e}.G, (G, )i=1emij=1oom (15)
e=1In(n)

Fourth, calculate the coefficient of variation of the
j-th hidden risk indicator:

V,=1-R,j=1,n

]

(16)

Fifth, calculate the weight of the j-th hidden risk
indicator:

v
w o=

j n 4
V.

]

j=1,,n

(7)

j=1

2.4.2 Evaluation of Comprehensive Risk Factors
using TOPSIS Method

TOPSIS is an objective comprehensive evaluation
method that effectively utilizes the information
from the original data to reflect the differences
between alternative schemes [20]. In this
research, we combine the weights calculated using
the Entropy Weight Method (EWM) with TOPSIS
to obtain the comprehensive risk factors for pirate
attacks. The specific calculation steps are as
follows:

Pj

B

Next, calculate the positive ideal solution and the
negative ideal solution:

/izll'“/m;jzll'“/n

(18)

Z+=(Z1+/Z;rl”'lz,:)
z;r::max(zij)li:1,...,m;]’:1,_“’n (19)
Z_: Z_,Z_,"',Z_

- (1 2 ") . (20)
Z], =mi1r\(zi].),1=1,...lm;]=1,...,n

Furthermore, calculate the distances from each
sample to the positive ideal solution and the
negative ideal solution:

D; = Zn:w].(Z;' —zi].)z,i =1,--,m
=1

(21)

(22)

Finally, calculate the comprehensive risk factor:

S =———,i=1,-
D! +D;

,m

(23)

Where S represents the comprehensive risk
factor of the i-th pirate attack incident.

2.5 Geographical Distribution Simulation and
Prediction of Comprehensive Risk Factors Based
on Nearest Neighbor Interpolation

Nearest neighbor interpolation is a simple yet
effective interpolation algorithm. For a given
target location, the algorithm identifies the closest
data point from a set of known data points and
uses its value as the interpolation result [21]. In
this research, we assume the maritime area is
divided into sxs grid points, resulting in a total
of N grid points. Using the comprehensive risk
factors from known pirate attack locations, we
estimate the comprehensive risk factors for each
grid point through nearest neighbor interpolation.
This approach allows us to simulate and predict
the geographical distribution of pirate attack risks
within the maritime area.

[l. RESULTS
3.1 Dataset

The data for this research is sourced from the
GISIS pirate attack incident database, which
provides statistics on the number of global pirate
attacks from 2006 to 2022 (as shown in Figure 4).
It is evident that East Africa, West Africa, the
Arabian Sea, and the Strait of Malacca are
hotspots for pirate attacks. Specifically, there were
283 incidents in East Africa, 647 in West Africa,
910 in the Arabian Sea, and 518 in the Strait of
Malacca. Consequently, these four maritime
regions were selected as the focus of our research
to evaluate the risk of pirate attacks and to
simulate and predict their geographical
distribution.

Additionally, the original pirate attack data is
highly fragmented. Through further data
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preprocessing and natural language processing
(including tokenization, stop word removal,
lemmatization, and keyword extraction), we
extracted the necessary information such as

latitude and longitude, number of pirates, weapon
details, and loss data for quantifying the risk
indicators of pirate attacks.
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3.2 Classification Results of Central Areas

The determination of the number of central areas
k is the basis for conducting the K-means
clustering algorithm to partition the pirate attack
incidents. The variation of the Sum of Squared
Errors (SSE) with different numbers of central
zones is shown in Figure 5. It can be observed that
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SSE decreases as the number of central areas
increases. When k exceeds 3, the downward trend
of the SSE curve for each region slows down. This
point is considered as the "elbow point",
indicating the optimal number of -clusters.
Therefore, in this research, the number of central
zones for each maritime areas is set to 3.
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After determining the number of central zones for
each maritime region, the K-means clustering
algorithm is applied to partition each pirate attack
incident into the respective pirate activity center
zones (as shown in Figure 6). It can be observed

T T T

6 8 10
irate activity center areas

Central Areas for Different Pirate Attacks

that pirate attack incidents exhibit a certain
degree of clustering. The majority of pirate attack
incident locations are relatively close to their
cluster centroids, indicating the effectiveness of
clustering to some extent. Subsequently, the
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maritime regions are divided into a total of 400

grid points (20x20 grid), and each grid point is
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assigned to its respective pirate activity center
zone using the trained K-means clustering model.
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Figure 6. Clustering results of pirate attacks: (a) East Africa, (b) west Africa, (¢) Arabian Sea, and (d)
Strait of Malacca

3.3 Results of Geographical Probability Factor
for Pirate Attack Incidents

Based on the K-means clustering results and the
latitude and longitude information of each pirate
attack incident, the time hyperparameter ¢ is set
to 0.02. Using the proposed algorithm, we can
determine the geographical probability factor for
pirate incidents at each grid point across different
regions. The results are shown in Figure 7. It
demonstrates a significant similarity between the

geographical

probability factor distribution

generated by our algorithm and the actual

distribution of pirate attack incident locations.
This finding strongly suggests that the proposed
algorithm effectively captures and measures the
geographical distribution patterns of pirate attack

incidents.
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Figure 7: Distribution of geographical probability factors for piracy incidents in various sea areas: (a)
East Africa, (b) west Africa, (c¢) Arabian Sea, and (d) Strait of Malacca

34 Results of Indicator Encoding

The Autoencoder model constructed in this
research has 5 neurons in the input layer, 3
neurons in the hidden layer, and 5 neurons in the
output layer, with Leaky ReLU as the activation
function. During the training process of the
Autoencoder, the Adam optimizer is used, with a
first-order momentum hyperparameter of 0.9, a
second-order momentum hyperparameter of
0.999, an initial learning rate of 0.001, 100

training epochs, and a batch size of 4. The training
results are shown in Figure 8. the reconstruction
error continuously decreases during the training
process. This indicates that the model
progressively extracts key information from the
raw data, enabling the hidden layer variables to
more effectively capture the features and structure
of the data.
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Using the Autoencoder, we encode and learn the
representations of four risk indicators: the
geographical probability factor of pirate incidents,
the number of pirates score, the weapon
equipment score, and the loss score. The encoded
risk indicators' results are shown in Figure 9. It
shows that the risk indicators encoded by the
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Autoencoder model exhibit more regular
distribution characteristics, resembling a step-like
distribution. This allows for more effective
representation of the risk information associated
with each pirate attack incident, facilitating
subsequent comprehensive risk evaluation and
analysis.
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Figure 9. Visualization results of hidden variable characteristics in each sea area: (a) East Africa, (b)
west Africa, (¢) Arabian Sea, and (d) Strait of Malacca

35 Comprehensive Risk Factor Evaluation
Results and Comparative Analysis

Using the EWM-TOPSIS method, we scored the
hidden risk indicators for each pirate attack
incident to obtain the final comprehensive risk
factors. Additionally, we compared these results
with those obtained using the commonly used
Entropy Weight Method combined with Grey
Relational Evaluation (EWM-GRE) to analyze the
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differences between the scoring results. As shown
in Figure 10, the EWM-TOPSIS method and
EWM-GRE present similar results for the
comprehensive risk evaluation of the same pirate
attack incidents. However, the EWM-TOPSIS
method proves to be more effective in
distinguishing the differences between the
comprehensive risk factors of various pirate attack
incidents.
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3.6  Simulated Geographical Distribution of achieve more precise geographical risk
Comprehensive Risk Factors distribution. Using nearest neighbor
interpolation, we simulated and predicted the
distribution of comprehensive risk factors across
different maritime regions, as shown in Figure 11.

After obtaining the comprehensive risk factors for
each pirate attack incident, we further refined the
maritime area into a total of 40,000 grid points to
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Figure 11: Simulation prediction results of comprehensive risk factor distribution in each sea area:(a)
East Africa, (b) west Africa, (¢) Arabian Sea, and (d) Strait of Malacca.

According to the predicted comprehensive risk
factor distribution in Figure 11, the risk of pirate
attacks is high in the East African region at
39°E-42°E, 6°S-8°S. In the West African region,
the area between 3°E-5°E and 6°N-15°N shows a
higher risk of pirate attacks. The Arabian Sea
(45°E-70°E, 5°N-15°N) displays significant risks,
characterized by an irregular and highly
fragmented risk distribution pattern. The Malacca
Strait (103°E-104°E, 1°N-2°N) has a very high risk
of pirate attacks in certain areas.

In summary, the algorithm proposed in this
research successfully simulates and predicts the
distribution of comprehensive risk factors for
pirates in different maritime areas. These results
provide valuable reference information for ship
route planning, helping to reduce the risk of pirate
attacks and offering broad potential and benefits
in practical applications.

V. DISCUSSION

This paper presents a  spatiotemporal
feature-based pirate attack risk assessment
model, which successfully simulates and predicts
the comprehensive risk distribution across
different maritime regions. First, by incorporating
the spatiotemporal distribution characteristics of
pirate attacks, we employ the K-means clustering
algorithm to delineate key pirate activity center

zones. This allows the construction of a
geographical probability factor that captures
spatiotemporal feature information, serving as a
critical indicator for risk assessment. Additionally,
natural language processing techniques are used
to further extract and quantify three key pirate
attack risk indicators: the number of pirates,
weaponry score, and loss score.

Subsequently, an Autoencoder is utilized to
encode these risk indicators, resulting in a more
structured, step-like distribution of the data,
which effectively enhances the representation of
pirate attack risk information and improves the
accuracy of subsequent risk assessments. Finally,
a comprehensive evaluation of pirate attack risks
is conducted using the Entropy Weight Method
(EWM) combined with the Technique for Order
Preference by Similarity to Ideal Solution
(TOPSIS), allowing for a precise analysis of risk.

The experimental results demonstrate that the
proposed model not only accurately captures the
geographical distribution patterns of pirate
attacks but also effectively differentiates the risk
levels across various pirate incidents. Through a
comparative analysis with the EWM-GRE model,
the EWM-TOPSIS method shows superior
performance in distinguishing risk variations
among different pirate attacks. Based on these
findings, the nearest neighbor interpolation
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method was applied to simulate and predict the
comprehensive risk of pirate attacks in four key
maritime regions: East Africa, West Africa, the
Arabian Sea, and the Strait of Malacca. These
results provide valuable reference points for safe
route planning in maritime navigation.

This study proposes a pirate attack risk
assessment model based on spatiotemporal
feature analysis, providing valuable practical
references for maritime route planning. First, the
study simulates and predicts the distribution of
pirate attack risks in four key maritime regions:
East Africa, West Africa, the Arabian Sea, and the
Strait of Malacca. Based on these precise risk
prediction results, shipping companies and
vessels can develop safer routes to avoid high-risk
areas, thereby effectively reducing the likelihood
of pirate attacks. Additionally, the study
integrates  four critical risk indicators—
geographical probability factor, number of pirates,
weaponry score, and loss score—offering a
comprehensive evaluation of pirate attack risks.
This holistic assessment approach significantly
enhances the identification and classification of
pirate attack risks, enabling governments and
international maritime organizations to formulate
more accurate preventive measures. By helping
the shipping industry mitigate economic losses
and improve maritime safety, this model also
contributes to the stability and development of
global trade.

This study also has certain limitations. First, due
to the constraints of the dataset used, only four
pirate attack risk indicators were quantified: the
geographical probability factor, the number of
pirates, the weaponry score, and the loss score. In
the future, the exploration of additional pirate
attack datasets could enable the extraction of
more potential risk indicators, thereby providing
more comprehensive data support for subsequent
risk assessments.Second, while current neural
network models possess strong feature extraction
capabilities, their internal mechanisms remain
difficult to interpret. In this study, an
Autoencoder was used for feature encoding,
resulting in a more orderly step-like distribution
of the data. However, this method still falls short
in explaining the underlying mechanisms of pirate

attack risk information, necessitating further
research to validate and improve its
effectiveness.Finally, the study employed the
Nearest Neighbor Interpolation algorithm to
simulate the comprehensive risk distribution of
pirate attacks across different maritime regions.
While this algorithm offers simplicity and high
computational efficiency, particularly in scenarios
requiring large-scale, real-time risk prediction, it
relies solely on the nearest data point. This can
lead to discontinuities or abrupt changes at
boundary areas, resulting in unrealistic risk
distribution gaps. Additionally, the Nearest
Neighbor Interpolation method may overlook the
potential spatial gradient of pirate attack risks,
thus impacting the smoothness and global
consistency of the prediction results.

In future research, we plan to first collect and
expand the dataset of pirate attack incidents to
extract and quantify additional risk indicators,
aiming to achieve a more comprehensive and
accurate assessment of pirate attack risks. Second,
we will delve deeper into the application
mechanisms of Autoencoders in feature encoding,
analyzing how they produce more orderly,
step-like distribution characteristics in the data to
enhance the model's interpretability. Third, we
will optimize the current interpolation algorithms,
focusing on addressing the issues of smoothness
and global consistency that arise from using the
Nearest Neighbor Interpolation algorithm in the
simulation and prediction of comprehensive
pirate attack risks. Finally, based on the simulated
and predicted comprehensive risk results, we plan
to develop a targeted ship route planning system,
providing more scientifically informed guidance
for the safe navigation of vessels.

V. CONCLUSIONS

The algorithm proposed in this paper effectively
captures and measures the geographical
distribution = patterns of pirate attacks,
demonstrating significant similarity to actual
occurrences. The main findings and contributions
of this research are summarized as follows:

1. Construction of Spatiotemporal Feature
Characteristics: By employing the K-means
clustering algorithm and introducing the
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geographical probability factor, we fully
account for the spatiotemporal distribution
characteristics of pirate activities, laying a
solid foundation for subsequent risk
assessment;

2. Enhanced Data Representation: The data
processed through the Autoencoder for
dimensionality reduction exhibit more
structured distribution characteristics,
enabling more effective representation of the
risk information associated with each pirate
attack incident;

3. Effective Risk Assessment: The wuse of
EWM-TOPSIS effectively measures the risk of
pirate attacks, facilitating a finer and more
accurate differentiation of risk variations
between different pirate attack incidents;

4. Geographical Risk Prediction: The algorithm
proposed in this paper effectively simulates
and  predicts the distribution of
comprehensive risk factors of piracy across
various maritime regions. These simulation
results provide crucial reference information
for maritime route planning, aiding in the
mitigation of piracy attack risks. The
prediction of comprehensive risk factors
indicates that piracy attack risks are higher in
certain areas of the East African maritime
region (39°E-42°E, 6°S-8°S) and the Strait of
Malacca (103°E-104°E, 1°N-2°N).
Additionally, certain areas of the West African
maritime region (3°E-5°E, 6°N-15°N) show
elevated risks, while the Arabian Sea
(45°E-70°E, 5°N-15°N) exhibits significant
and irregularly distributed piracy attack risks.
This algorithm demonstrates extensive
potential and advantages in practical
applications.

Funding: This research was funded by Zhejiang
Provincial Public Welfare Project of China under
Grant No. LGG22E090004, Zhejiang Provincial
Natural Science Foundation of China under Grant
number LQ21E090006.

Institutional Review Board Statement: Not
applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no
conflicts of interest.

10.

REFERENCES

Grzelakowski, A. S.; Herdzik, J.; Skiba, S.
Maritime shipping decarbonization: Roadmap
to meet zero-emission target in shipping as a
link in the global supply chains. Energies
2022, 15, 6150. https://doi.org/10.3390/en15
176150.

Ehizuelen, M. M. O. Assessing the national
and regional effectiveness of countering
maritime piracy in the Gulf of Guinea.
GeoJournal 2023, 88, 3549-3574. https://doi.
0rg/10.1007/s10708-022-10823-0.

Robitaille, M. C. Maritime piracy and
international trade. Defence Peace Econ.
2020, 31, 957-974. https://doi.org/10.10
80/10242694.2019.1627511.

Nwalozie, C. J. Exploring contemporary sea
piracy in Nigeria, the Niger Delta and the Gulf
of Guinea. J. Transp.Secur. 2020, 13, 159-178.
https://doi.org/10.1007/512198-020-00218-y.
Denton, G. L.; Harris, J. R. Maritime piracy,
military capacity, and institutions in the Gulf
of Guinea. Terror. Polit. Violenc. 2022, 34,
1-27.  https://doi.org/10.1080/09546553.20
19.1659783.

Regan, J. Varied Incident Rates of Global. Int.
Crim. Justice Rev. 2022, 32, 374-387. https://
doi.org/10.1177/1057567720944448.

Jiang, M.; Lu, J. The analysis of maritime
piracy occurred in Southeast Asia by using
Bayesian network. Transport.Res. E-log.
2020, 139, 101965. https://doi.org/10.1016/
j.tre.2020.101965.

Fan, H.; Lu, J.; Chang, Z.; Ji, Y. A Bayesian
network-based = TOPSIS  framework to
dynamically control the risk of maritime
piracy. Marit. Policy Manag. 2023, 1-20.
https://doi.org/10.1080/03088839.2023.219
3585.

Dabrowski, J. J.; De Villiers, J. P. Maritime
piracy situation modelling with dynamic
Bayesian networks. Inform. Fusion 2015, 23,
116-130.https://doi.org/10.1016/j.inffus.2014.
07.001.

Gong, X.; Jiang, H.; Yang, D. Maritime piracy
risk assessment and policy implications: A
two-step approach. Mar. Policy 2023, 150,
105547. https://doi.org/10.1016/j.marpol.20

23.105547.

A Novel Method for Assessing Pirate Attack Risks and Spatial Distribution

© 2024 Great Britain Journals Press

London Journal of Engineering Research

Volume 24 | Issue 7 | Compilation 1.0



London Journal of Engineering Research

11.

12.

13.

14.

15.

16.

17.

18.

19.

Vanék, O.; Jakob, M.;Hrstka, O.; Péchoucek,
M. Agent-based model of maritime traffic in
piracy-affected waters. Transport.Res.
C-emer. 2013, 36, 157-176. https://doi.org/
10.1016/j.trc.2013.08.0009.

Jin, M.; Shi, W.; Lin, K. C.; Li, K. X. Marine
piracy prediction and prevention: Policy
implications. Mar. Policy 2019, 108, 103528.
https://doi.org/10.1016/j.marpol.2019.10352
8.

Pristrom, S.; Yang, Z.; Wang, J.; Yan, X. A
novel flexible model for piracy and robbery
assessment of merchant ship operations.
Reliab. Eng. Syst. Safe. 2016, 155, 196-211.
https://doi.org/10.1016/j.ress.2016.07.001.
Daxecker, U.; Prins, B. C. Financing rebellion:
Using piracy to explain and predict conflict
intensity in Africa and Southeast Asia. J.
Peace Res. 2017, 54, 215-230. https://doi.
0rg/10.1177/0022343316683436.

Govender, P.; Sivakumar, V.; Application of
k-means and  hierarchical  clustering
techniques for analysis of air pollution: A
review (1980—2019). Atmos pollut. Res. 2020,
11, 40-56. https://doi.org/10.1016/j.apr.2019.
09.009.

Wang, Y.; Yao, H.; Zhao, S.; Zheng,
Y.E.F.Dimensionality reduction strategy based
on auto-encoder. Proceedings of the 7th
International =~ Conference on  Internet
Multimedia  Computing and  Service,
Zhangjiajie, Hunan, China, 19-21 August2015.
https://doi.org/10.1145/2808492.2808555.
Demsar, U.; Harris, P.; Brunsdon, C.;
Fotheringham, A. S.; McLoone, S. Principal
component analysis on spatial data: an
overview. Annals of the Association of
American Geographers 2013, 103, 106-128.
https://doi.org/10.1080/00045608.2012.689
236.

Yong, A. G.; Pearce, S. A beginner’s guide to
factor analysis: Focusing on exploratory factor
analysis. Tutorials in quantitative methods

for psychology, 2013, 9, 79-94. https://doi.

org/10.20982/tqmp.09.2.p079.

Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J.
Suitability evaluation system for the shallow
geothermal energy implementation in region
by Entropy Weight Method and TOPSIS

20.

21.

method. Renew. Energ. 2022, 184, 564-576.
https://doi.org/10.1016/j.renene.2021.11.112.
Torkayesh, A. E.; Deveci, M.; Karagoz,
S.;Antucheviciene, J. A state-of-the-art survey
of evaluation based on distance from average
solution (EDAS): Developments  and
applications. Expert Syst. Appl. 2023, 221,
119724. https://doi.org/10.1016/j.eswa.2023.
119724.

Ni, K. S.; Nguyen, T. Q. An adaptable
k-nearest neighbors algorithm for MMSE
image interpolation. IEEE T.Image Process.
20009, 18, 1976-1987. https://doi.org/10.1109/
TIP.2009.2023706.

A Novel Method for Assessing Pirate Attack Risks and Spatial Distribution

Volume 24 | Issue 7 | Compilation 1.0

© 2024 Great Britain Journals Press



