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ABSTRACT

Pirate attacks pose one of the most severe

challenges to the safety of maritime navigation.

Effectively quantifying the risk of pirate attacks

and understanding their spatial distribution

through historical records is crucial for planning

safe shipping routes. Given the diverse data types

and multiple factors involved in assessing pirate

attacks recorded in the Global Integrated

Shipping Information System (GISIS) database,

we propose a spatiotemporal influence factor

analysis model based on the K-means clustering

algorithm. Features are encoded using an

Autoencoder, and the evaluation is conducted

using the Entropy Weight Method- Technique for

Order Preference by Similarity to Ideal Solution

(EWM-TOPSIS). The model then simulates and

predicts the geographical distribution of pirate

risks. The results indicate that the model

effectively captures the geographical distribution

patterns of pirate attack incidents and

successfully predicts the risk distribution across

different sea areas. This approach aids in ship

route planning and reduces the risk of pirate

attacks.
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I. INTRODUCTION
Maritime transportation plays a pivotal role in the

development of the global supply chain.

According to the International Maritime

Organization (IMO), nearly 90% of the world’s

trade is conducted by sea [1]. However, the

increasing frequency of pirate attacks has become

a significant challenge for the maritime industry

and one of the most serious and unsettling issues

facing the international community [2][3]. Thus,

effectively assessing the risk of pirate attacks and

predicting the geographical distribution of piracy

risk to aid in route planning for ships has become

a critical task.

Current research on pirate attacks primarily

focuses on three areas: descriptive statistical

analysis, analysis of influencing factors, and risk

assessment of pirate attacks. In terms of

descriptive statistical analysis, Nwalozie analyzed

contemporary piracy in Nigeria, the Niger Delta,

and the Gulf of Guinea [4]. Denton et al.

conducted a statistical analysis of piracy activities

in the Gulf of Guinea, showing that stronger and

democratic regimes are less likely to encounter

piracy [5]. Regan used nonprobability sampling to

analyze piracy cases between 1985 and 2018 in 11

countries, based on data from various

organizations. Key predictors of piracy frequency

were total country population, total fish tonnage,

gross domestic product, and government

weakness [6].

For analyzing the influencing factors of pirate

attacks, Bayesian networks are commonly used

for risk assessment and prediction. Jiang et al.

utilized a Bayesian network to estimate the

likelihood of ships being attacked or hijacked in

Southeast Asia, considering the uncertainty of

influencing factors [7]. Fan et al. proposed a

two-stage technique for order of preference by

similarity to an ideal solution (TOPSIS) model

based on the Bayesian network. In the first stage,

a data-driven Bayesian network identifies causal

relationships influencing pirate behaviors. The

second stage involves calculating a decision

L
on

d
on

 J
ou

rn
al

 o
f 

E
n

gi
n

ee
ri

n
g 

R
es

ea
rc

h

©2024 Great Britain Journals Press Volume 24 | Issue 7 | Compilation 1.0 21



matrix of strategies using TOPSIS, enhancing the

strength of risk prediction and dynamic diagnosis

by the Bayesian network [8]. Dabrowski et al.

presented a novel generative model based on

dynamic Bayesian networks (DBN) to simulate

maritime vessel behavior, especially in piracy

scenarios, allowing for the evaluation and

optimization of behavior models through

synthetic data generation and analysis [9].

Regarding the risk assessment of pirate attacks,

Gong et al. proposed a two-step analytical

framework based on a Random Forest (RF)

model, Generative Adversarial Nets (GANs), and

Matrix Completion (MC) algorithm to assess the

risks of successful piracy attacks [10]. Vaněk et al.

developed AGENTC, a data-driven agent-based

simulation model of maritime traffic that

explicitly models pirate activity and

countermeasures. This model simulates the

behavior and interactions of thousands of vessels,

capturing the complex dynamics of the maritime

transportation system under piracy threat and

assessing various countermeasures [11]. Jin et al.

used data on piracy attacks between 1994 and

2017 to estimate the probability of a vessel being

attacked and the success rate of these attacks.

Their binary logistic regression model showed

that smaller vessels and open registry vessels are

more likely to be targeted by pirates [12]. Pristrom

et al. proposed a flexible model for assessing

piracy and robbery risks in merchant ship

operations, analyzing incidents based on major

influencing factors such as ship characteristics

and geographical locations. An analytical model

incorporating Bayesian reasoning was proposed to

estimate the likelihood of a ship being hijacked in

the Western Indian or Eastern African regions

[13].

In summary, current research rarely integrates

the spatiotemporal characteristics of pirate

attacks, evaluates and analyzes risks, and predicts

the geographical distribution of piracy risk. This

paper addresses this gap by proposing a novel risk

assessment algorithm for pirate attacks that

considers spatiotemporal characteristics. Using

K-means clustering, Autoencoder, and the

Entropy Weight Method-TOPSIS (EWM-

TOPSIS), this algorithm can simulate and predict

the geographical distribution of piracy risk,

providing crucial information for ship route

planning and significantly reducing the risk of

pirate attacks.

II. MATERIALS AND METHODS

This research begins by extracting pirate attack

data from the Global Integrated Shipping

Information System (GISIS) database. Using the

K-means clustering algorithm, we delineate zones

and construct external competition factors,

internal attraction factors, quantity factors, and

temporal factors. Based on these four related

factors, we derive the geographical probability

factor. Subsequently, we apply an Autoencoder to

encode the features of the four risk impact

indicators: geographical probability factor,

number of pirates, weapon equipment score, and

loss score. Finally, we use the EWM-TOPSIS

method to conduct a comprehensive risk

assessment and employ the nearest neighbor

interpolation method to obtain the simulated and

predicted distribution of pirate attack risks across

different sea areas. The specific methodology and

process flow are illustrated in Figure 1.
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Figure 1: Algorithm flow structure chart

2.1 Analysis of Risk Influencing Factors in Pirate
Attack Incidents

The risk of pirate attacks is influenced by several

critical factors, including Geographical Probability

Factor of Pirate Attacks, Number of Pirates,

Weapons, and Losses Caused by the Attacks.

2.1.1 Geographical Probability Factor of Pirate
Attacks

Hotspot areas typically indicate a higher density

of pirate activities in a specific region during a

particular time period, thereby significantly

increasing the potential risk of ships encountering

pirate attacks in these regions. Additionally,

within the same maritime area, multiple types of

pirate groups may exist, which can sometimes

engage in conflicts or collusion with one another

[14]. Therefore, this research constructs a

geographical probability factor of pirate attacks to

comprehensively quantify these influencing

factors.

2.1.2 Number of Pirates

The number of pirates is a crucial factor in

assessing the risk of pirate attacks. A larger

number of pirates makes it more challenging for

ships to effectively defend against attacks, thereby

increasing the overall risk. This research

incorporates the number of pirates as one of the

quantifiable factors in evaluating the risk of pirate

attacks, aiming to enhance the accuracy and

comprehensiveness of the risk assessment.

2.1.3 Weapons

The type of weapons used by pirates significantly

impacts the severity of the risk in pirate attack

incidents. Pirates typically employ a variety of

weapons, including boats, knives, firearms, and

rockets. Both the quantity and technological

sophistication of these weapons are critical factors

in risk assessment. Therefore, this research

constructs a weapon equipment score to

comprehensively evaluate the level of pirate

armament, thereby providing a more precise

quantification of the attack risk.

2.1.4 Losses Caused by Attacks

Pirate attacks can result in various types of losses,

including theft of goods, hostage-taking, and

casualties. The scale of these losses and the

severity of the casualties reflect the increased risk
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level of pirate attacks. This research constructs a

loss score to quantify the extent of damage and

casualties caused by pirate attacks, providing a

more accurate assessment of the risk.

2.2 Quantification of Pirate Attack Risk Indicators

2.2.1 Geographical Probability Factors

The occurrence of pirate attacks is not a matter of

chance. To quantify the probability of pirate

incidents at various geographical locations, this

research introduces the geographical probability

factor.

● Clustering of Pirate Incident Hotspots Based

on K-means Algorithm

K-means is a common unsupervised machine

learning clustering algorithm aimed at dividing a

dataset into k distinct clusters. Each sample

belongs to one cluster, ensuring high similarity

within the cluster and low similarity between

different clusters [15]. In this research, we use the

latitude and longitude data of pirate attacks as

input to the K-means algorithm to identify regions

with frequent pirate activities. Additionally, to set

a reasonable number of pirate activity centers

within a maritime area, we evaluate the number of

clusters using the Sum of Squared Errors (SSE):

(1)

Where represents the number of pirate

incidents occurring in the i-th pirate activity

center area. and respectively denote the

longitude and latitude of the j-th pirate incident

point belonging to the i-th pirate activity center

area. and represent the longitude and

latitude of the pirate activity center point.

● Calculation of Geographical Probability Factor

Divide the maritime area into M grid points in an

grid. Using the trained K-means clustering

model, each grid point is assigned to the nearest

pirate activity center region. The closer a grid

point is to a pirate activity center, the more

frequent the pirate activities. Therefore, the

internal attraction factor is derived as follows:

Where represents the number of grid points

contained in thei-th pirate activity center area;

and respectively denote the longitude and

latitude of the j-th grid point belonging to the i-th

pirate activity center area; represents the

internal attraction factor of the j-th grid point

belonging to the i-th pirate activity center area.

There exists a competitive relationship between

different pirate groups, making pirate incidents

less likely to occur in overlapping areas of

influence between two pirate groups. Therefore,

the calculation formula for the external

competition factor is as follows:

(3)

(2)

(4)

Where represents the Euclidean distance from

the i-th pirate activity center point to the j-th

pirate activity center point; represents the

external competitive factor of thei-th pirate

activity center point. By combining the internal

attraction factor and the external competition

factor, we derive the comprehensive competition

factor:

Where represents the comprehensive

competitive factor of the j-th grid point belonging

to thei-th pirate activity center area.

If a pirate incident has recently occurred in the

surrounding area of a grid point, it is likely to face

another pirate attack in the near future.

Therefore, this research introduces the quantity

factor and the temporal factor . The

quantity factor is measured by the total number of

pirate incidents occurring within the four adjacent

θ
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grids connected to each grid point for each year



(as shown in Figure 2). Finally, by combining the

quantity factor and the temporal factor, we derive

the activity factor as follows:

(5)

Where and represent the selected starting

and ending years of the pirate attack incidents,

respectively; represents the quantity factor of

the j-th grid point belonging to the i-th pirate

activity center area in year q; represents the

temporal factor in year q; t represents a time

hyperparameter; represents the activity factor

of the j-th grid point belonging to the i-th pirate

activity center area.

Figure 2: Quantity factor calculation diagram
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By combining the comprehensive competition

factor and the activity factor, followed by

normalization, we obtain the geographical

probability factor:

Where represents the geographical probability

factor of the j-th grid point belonging to the i-th

pirate activity center area.

Finally, the Cubic Spline Interpolation algorithm

is used to interpolate the geographical probability

factor for each actual pirate incident location:

(7)

Where are the

coefficients of the interpolation function, obtained

by selecting the 8 nearest neighboring grid points

including the target point to be interpolated and

setting up a linear equation system for solution. 𝑢
𝑖

and respectively represent the longitude and𝑙
𝑖

latitude of the -th pirate incident location.𝑖

represents the geographical

probability factor of the -th pirate incident𝑖
location.

2.2.2 Number of Pirates

Generally, a higher number of pirates indicates a

greater risk of pirate attacks. Therefore, this paper

uses the number of pirates involved in each

incident as one of the key indicators for assessing

the risk of pirate attacks.

β β β β β β β β β β′ = + + + + + + + + +2 2 3 2 2 3
0 1 2 3 4 5 6 7 8 9i i i i i i i i i i i i iP u l u u l l u u l u l l

2.2.3. Weapon Equipment Score

Pirates typically use a variety of weapons,

including knives, firearms, boats, and rockets. The

quantity and technological sophistication of these

weapons are critical indicators of the risk posed

(6)
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2.2.3. Weapon Equipment Score

Pirates typically use a variety of weapons,

including knives, firearms, boats, and rockets. The

quantity and technological sophistication of these

weapons are critical indicators of the risk posed

by pirate attacks. Using the GISIS database,

processed through natural language processing,

this research extracts relevant descriptions and

quantities of weapons from pirate attack reports.

We then perform quantitative analysis on this

information (as shown in Table 1) and calculate a

weapon equipment score for each pirate attack

based on the quantity and value of the weapon

information:

(8)

Where represents the scoring of the j-th

weaponry information for the i-th pirate attack

incident location; represents the quantity of

the j-th weaponry information for the i-th pirate

attack incident location; represents the

Weapon Equipment Score for the i-th pirate

attack incident location.

Table 1:Weapons and Equipment Information

Scores

Weapons and

Equipment Information
Score

Knives 1

Guns 2

Boat 3

Armed 3

Rocket 4

2.2.4. Loss Score

The losses incurred from pirate attacks include

theft of goods, hostage-taking, and casualties. The

extent of these losses is a critical indicator of the

risk associated with pirate attacks. Using the same

method as for calculating the weapon equipment

score, we perform a quantitative analysis of the

loss information from pirate attacks (as shown in

Table 2). We then compute the loss score for each

pirate attack by integrating the quantity and value

of the loss information:

Where represents the scoring of the j-th loss

information for the i-th pirate attack incident

location; represents the quantity of the j-th

loss information for the i-th pirate attack incident

location; represents the Loss score for the i-th

pirate attack incident location.

Table 2: Loss Information Score

Loss information Score

Stolen 1

Wounded 2

Hijacked 2

Fired 3

Raft 4

=

= =∑ 
5

1
, 1, ,i ij ijQ W A i n

(9)
=

= =∑ 
5

1
, 1, ,i ij ij

i
L I B i n

2.3 Feature Encoding Based on Autoencoder
Autoencoder is a type of neural network model

commonly used for feature extraction and data

dimensionality reduction [16]. Compared to

traditional dimensionality reduction algorithms

such as Principal Component Analysis [17] and

Factor Analysis [18], autoencoders can capture

nonlinear data relationships while performing

adaptive feature learning and more effective

representation learning. Autoencoders consist of

two processes: encoding and decoding. The basic

structure includes an input layer, hidden layers,

and an output layer (as shown in Figure 3), with

the objective of minimizing reconstruction error.



Figure 3: Autoencoder Structure

The first step is to encode the input layer variables

into hidden layer variables for dimensionality

reduction:

(10)

Where represents the weight matrix;

represents the bias vector; represents the

activation function; represents the input layer

variables; represents the hidden layer

variables.

Next, the hidden layer variables are decoded back

to their original form:

(11)

Where represents the weight matrix;

represents the bias vector; represents the

output layer variables.

The formula for calculating reconstruction error

is:

(12)

2.4 Evaluation of Comprehensive Risk Factors
Based on EWM-TOPSIS

2.4.1 Weight Calculation Using Entropy Weight
Method (EWM)

The entropy weight method (EWM) is an objective

weighting algorithm based on information

entropy theory [19]. It determines the weights of

each indicator based on their information content,

thereby avoiding the subjective biases present in

subjective weighting methods such as the Analytic

Hierarchy Process (AHP), and improving the

objectivity and authenticity of evaluation results.

The specific steps are as follows.

First, perform indicator normalization. Since the

encoded hidden risk indicators are all of the

"larger-the-better" type, the inherent process is:

(13)

Where represents the j-th hidden risk indicator

of the i-th sample.

Second, calculate the proportion of the i-th

sample value under the j-th hidden risk indicator:

(14)
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Third, calculate the entropy value of the j-th

hidden risk indicator:

(15)

Fourth, calculate the coefficient of variation of the

j-th hidden risk indicator:

(16)

Fifth, calculate the weight of the j-th hidden risk

indicator:

(17)

2.4.2 Evaluation of Comprehensive Risk Factors
using TOPSIS Method

TOPSIS is an objective comprehensive evaluation

method that effectively utilizes the information

from the original data to reflect the differences

between alternative schemes [20]. In this

research, we combine the weights calculated using

the Entropy Weight Method (EWM) with TOPSIS

to obtain the comprehensive risk factors for pirate

attacks. The specific calculation steps are as

follows:

(18)

Next, calculate the positive ideal solution and the

negative ideal solution:

(19)

(20)

Furthermore, calculate the distances from each

sample to the positive ideal solution and the

negative ideal solution:

(21)

(22)

Finally, calculate the comprehensive risk factor:

(23)

Where represents the comprehensive risk

factor of the i-th pirate attack incident.

2.5 Geographical Distribution Simulation and
Prediction of Comprehensive Risk Factors Based
on Nearest Neighbor Interpolation

Nearest neighbor interpolation is a simple yet

effective interpolation algorithm. For a given

target location, the algorithm identifies the closest

data point from a set of known data points and

uses its value as the interpolation result [21]. In

this research, we assume the maritime area is

divided into grid points, resulting in a total

of N grid points. Using the comprehensive risk

factors from known pirate attack locations, we

estimate the comprehensive risk factors for each

grid point through nearest neighbor interpolation.

This approach allows us to simulate and predict

the geographical distribution of pirate attack risks

within the maritime area.

III. RESULTS

3.1 Dataset

The data for this research is sourced from the

GISIS pirate attack incident database, which

provides statistics on the number of global pirate

attacks from 2006 to 2022 (as shown in Figure 4).

It is evident that East Africa, West Africa, the

Arabian Sea, and the Strait of Malacca are

hotspots for pirate attacks. Specifically, there were

283 incidents in East Africa, 647 in West Africa,

910 in the Arabian Sea, and 518 in the Strait of

Malacca. Consequently, these four maritime

regions were selected as the focus of our research

to evaluate the risk of pirate attacks and to

simulate and predict their geographical

distribution.

Additionally, the original pirate attack data is

highly fragmented. Through further data
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preprocessing and natural language processing

(including tokenization, stop word removal,

lemmatization, and keyword extraction), we

extracted the necessary information such as

latitude and longitude, number of pirates, weapon

details, and loss data for quantifying the risk

indicators of pirate attacks.

Figure 4: Statistics on the Number of Piracy Incidents in Various Sea Areas

3.2 Classification Results of Central Areas

The determination of the number of central areas

k is the basis for conducting the K-means

clustering algorithm to partition the pirate attack

incidents. The variation of the Sum of Squared

Errors (SSE) with different numbers of central

zones is shown in Figure 5. It can be observed that

SSE decreases as the number of central areas

increases. When k exceeds 3, the downward trend

of the SSE curve for each region slows down. This

point is considered as the "elbow point",

indicating the optimal number of clusters.

Therefore, in this research, the number of central

zones for each maritime areas is set to 3.

Figure 5: SSE changes in the Number of Central Areas for Different Pirate Attacks

After determining the number of central zones for

each maritime region, the K-means clustering

algorithm is applied to partition each pirate attack

incident into the respective pirate activity center

zones (as shown in Figure 6). It can be observed

that pirate attack incidents exhibit a certain

degree of clustering. The majority of pirate attack

incident locations are relatively close to their

cluster centroids, indicating the effectiveness of

clustering to some extent. Subsequently, the
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maritime regions are divided into a total of 400

grid points ( grid), and each grid point is

assigned to its respective pirate activity center

zone using the trained K-means clustering model.

Figure 6: Clustering results of pirate attacks: (a) East Africa, (b) west Africa, (c) Arabian Sea, and (d)
Strait of Malacca

3.3 Results of Geographical Probability Factor
for Pirate Attack Incidents

Based on the K-means clustering results and the

latitude and longitude information of each pirate

attack incident, the time hyperparameter t is set

to 0.02. Using the proposed algorithm, we can

determine the geographical probability factor for

pirate incidents at each grid point across different

regions. The results are shown in Figure 7. It

demonstrates a significant similarity between the

geographical probability factor distribution

generated by our algorithm and the actual

distribution of pirate attack incident locations.

This finding strongly suggests that the proposed

algorithm effectively captures and measures the

geographical distribution patterns of pirate attack

incidents.

×20 20
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Figure 7: Distribution of geographical probability factors for piracy incidents in various sea areas: (a)
East Africa, (b) west Africa, (c) Arabian Sea, and (d) Strait of Malacca

3.4 Results of Indicator Encoding

The Autoencoder model constructed in this

research has 5 neurons in the input layer, 3

neurons in the hidden layer, and 5 neurons in the

output layer, with Leaky ReLU as the activation

function. During the training process of the

Autoencoder, the Adam optimizer is used, with a

first-order momentum hyperparameter of 0.9, a

second-order momentum hyperparameter of

0.999, an initial learning rate of 0.001, 100

training epochs, and a batch size of 4. The training

results are shown in Figure 8. the reconstruction

error continuously decreases during the training

process. This indicates that the model

progressively extracts key information from the

raw data, enabling the hidden layer variables to

more effectively capture the features and structure

of the data.
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Figure 8: Reconstruction Error Results of Each Model Training

Using the Autoencoder, we encode and learn the

representations of four risk indicators: the

geographical probability factor of pirate incidents,

the number of pirates score, the weapon

equipment score, and the loss score. The encoded

risk indicators' results are shown in Figure 9. It

shows that the risk indicators encoded by the

Autoencoder model exhibit more regular

distribution characteristics, resembling a step-like

distribution. This allows for more effective

representation of the risk information associated

with each pirate attack incident, facilitating

subsequent comprehensive risk evaluation and

analysis.
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Figure 9: Visualization results of hidden variable characteristics in each sea area: (a) East Africa, (b)
west Africa, (c) Arabian Sea, and (d) Strait of Malacca

3.5 Comprehensive Risk Factor Evaluation
Results and Comparative Analysis

Using the EWM-TOPSIS method, we scored the

hidden risk indicators for each pirate attack

incident to obtain the final comprehensive risk

factors. Additionally, we compared these results

with those obtained using the commonly used

Entropy Weight Method combined with Grey

Relational Evaluation (EWM-GRE) to analyze the

differences between the scoring results. As shown

in Figure 10, the EWM-TOPSIS method and

EWM-GRE present similar results for the

comprehensive risk evaluation of the same pirate

attack incidents. However, the EWM-TOPSIS

method proves to be more effective in

distinguishing the differences between the

comprehensive risk factors of various pirate attack

incidents.
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Figure 10: Analysis of evaluation results of different models in each sea area: (a) East Africa, (b) west
Africa, (c) Arabian Sea, and (d) Strait of Malacca

3.6 Simulated Geographical Distribution of
Comprehensive Risk Factors

After obtaining the comprehensive risk factors for

each pirate attack incident, we further refined the

maritime area into a total of 40,000 grid points to

achieve more precise geographical risk

distribution. Using nearest neighbor

interpolation, we simulated and predicted the

distribution of comprehensive risk factors across

different maritime regions, as shown in Figure 11.
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Figure 11: Simulation prediction results of comprehensive risk factor distribution in each sea area:(a)
East Africa, (b) west Africa, (c) Arabian Sea, and (d) Strait of Malacca.

According to the predicted comprehensive risk

factor distribution in Figure 11, the risk of pirate

attacks is high in the East African region at

39°E-42°E, 6°S-8°S. In the West African region,

the area between 3°E-5°E and 6°N-15°N shows a

higher risk of pirate attacks. The Arabian Sea

(45°E-70°E, 5°N-15°N) displays significant risks,

characterized by an irregular and highly

fragmented risk distribution pattern. The Malacca

Strait (103°E-104°E, 1°N-2°N) has a very high risk

of pirate attacks in certain areas.

In summary, the algorithm proposed in this

research successfully simulates and predicts the

distribution of comprehensive risk factors for

pirates in different maritime areas. These results

provide valuable reference information for ship

route planning, helping to reduce the risk of pirate

attacks and offering broad potential and benefits

in practical applications.

IV. DISCUSSION

This paper presents a spatiotemporal

feature-based pirate attack risk assessment

model, which successfully simulates and predicts

the comprehensive risk distribution across

different maritime regions. First, by incorporating

the spatiotemporal distribution characteristics of

pirate attacks, we employ the K-means clustering

algorithm to delineate key pirate activity center

zones. This allows the construction of a

geographical probability factor that captures

spatiotemporal feature information, serving as a

critical indicator for risk assessment. Additionally,

natural language processing techniques are used

to further extract and quantify three key pirate

attack risk indicators: the number of pirates,

weaponry score, and loss score.

Subsequently, an Autoencoder is utilized to

encode these risk indicators, resulting in a more

structured, step-like distribution of the data,

which effectively enhances the representation of

pirate attack risk information and improves the

accuracy of subsequent risk assessments. Finally,

a comprehensive evaluation of pirate attack risks

is conducted using the Entropy Weight Method

(EWM) combined with the Technique for Order

Preference by Similarity to Ideal Solution

(TOPSIS), allowing for a precise analysis of risk.

The experimental results demonstrate that the

proposed model not only accurately captures the

geographical distribution patterns of pirate

attacks but also effectively differentiates the risk

levels across various pirate incidents. Through a

comparative analysis with the EWM-GRE model,

the EWM-TOPSIS method shows superior

performance in distinguishing risk variations

among different pirate attacks. Based on these

findings, the nearest neighbor interpolation
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method was applied to simulate and predict the

comprehensive risk of pirate attacks in four key

maritime regions: East Africa, West Africa, the

Arabian Sea, and the Strait of Malacca. These

results provide valuable reference points for safe

route planning in maritime navigation.

This study proposes a pirate attack risk

assessment model based on spatiotemporal

feature analysis, providing valuable practical

references for maritime route planning. First, the

study simulates and predicts the distribution of

pirate attack risks in four key maritime regions:

East Africa, West Africa, the Arabian Sea, and the

Strait of Malacca. Based on these precise risk

prediction results, shipping companies and

vessels can develop safer routes to avoid high-risk

areas, thereby effectively reducing the likelihood

of pirate attacks. Additionally, the study

integrates four critical risk indicators—

geographical probability factor, number of pirates,

weaponry score, and loss score—offering a

comprehensive evaluation of pirate attack risks.

This holistic assessment approach significantly

enhances the identification and classification of

pirate attack risks, enabling governments and

international maritime organizations to formulate

more accurate preventive measures. By helping

the shipping industry mitigate economic losses

and improve maritime safety, this model also

contributes to the stability and development of

global trade.

This study also has certain limitations. First, due

to the constraints of the dataset used, only four

pirate attack risk indicators were quantified: the

geographical probability factor, the number of

pirates, the weaponry score, and the loss score. In

the future, the exploration of additional pirate

attack datasets could enable the extraction of

more potential risk indicators, thereby providing

more comprehensive data support for subsequent

risk assessments.Second, while current neural

network models possess strong feature extraction

capabilities, their internal mechanisms remain

difficult to interpret. In this study, an

Autoencoder was used for feature encoding,

resulting in a more orderly step-like distribution

of the data. However, this method still falls short

in explaining the underlying mechanisms of pirate

attack risk information, necessitating further

research to validate and improve its

effectiveness.Finally, the study employed the

Nearest Neighbor Interpolation algorithm to

simulate the comprehensive risk distribution of

pirate attacks across different maritime regions.

While this algorithm offers simplicity and high

computational efficiency, particularly in scenarios

requiring large-scale, real-time risk prediction, it

relies solely on the nearest data point. This can

lead to discontinuities or abrupt changes at

boundary areas, resulting in unrealistic risk

distribution gaps. Additionally, the Nearest

Neighbor Interpolation method may overlook the

potential spatial gradient of pirate attack risks,

thus impacting the smoothness and global

consistency of the prediction results.

In future research, we plan to first collect and

expand the dataset of pirate attack incidents to

extract and quantify additional risk indicators,

aiming to achieve a more comprehensive and

accurate assessment of pirate attack risks. Second,

we will delve deeper into the application

mechanisms of Autoencoders in feature encoding,

analyzing how they produce more orderly,

step-like distribution characteristics in the data to

enhance the model's interpretability. Third, we

will optimize the current interpolation algorithms,

focusing on addressing the issues of smoothness

and global consistency that arise from using the

Nearest Neighbor Interpolation algorithm in the

simulation and prediction of comprehensive

pirate attack risks. Finally, based on the simulated

and predicted comprehensive risk results, we plan

to develop a targeted ship route planning system,

providing more scientifically informed guidance

for the safe navigation of vessels.

V. CONCLUSIONS

The algorithm proposed in this paper effectively

captures and measures the geographical

distribution patterns of pirate attacks,

demonstrating significant similarity to actual

occurrences. The main findings and contributions

of this research are summarized as follows:

1. Construction of Spatiotemporal Feature

Characteristics: By employing the K-means

clustering algorithm and introducing the
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geographical probability factor, we fully

account for the spatiotemporal distribution

characteristics of pirate activities, laying a

solid foundation for subsequent risk

assessment;

2. Enhanced Data Representation: The data

processed through the Autoencoder for

dimensionality reduction exhibit more

structured distribution characteristics,

enabling more effective representation of the

risk information associated with each pirate

attack incident;

3. Effective Risk Assessment: The use of

EWM-TOPSIS effectively measures the risk of

pirate attacks, facilitating a finer and more

accurate differentiation of risk variations

between different pirate attack incidents;

4. Geographical Risk Prediction: The algorithm

proposed in this paper effectively simulates

and predicts the distribution of

comprehensive risk factors of piracy across

various maritime regions. These simulation

results provide crucial reference information

for maritime route planning, aiding in the

mitigation of piracy attack risks. The

prediction of comprehensive risk factors

indicates that piracy attack risks are higher in

certain areas of the East African maritime

region (39°E-42°E, 6°S-8°S) and the Strait of

Malacca (103°E-104°E, 1°N-2°N).

Additionally, certain areas of the West African

maritime region (3°E-5°E, 6°N-15°N) show

elevated risks, while the Arabian Sea

(45°E-70°E, 5°N-15°N) exhibits significant

and irregularly distributed piracy attack risks.

This algorithm demonstrates extensive

potential and advantages in practical

applications.
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